Spectroscopic ellipsometric and Raman spectroscopic investigations of pulsed laser treated glassy carbon surfaces

J. Csontos, Z. Pápa, A. Gárdián, M. Füle, J. Budai, Z. Toth

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

In this study spectroscopic ellipsometry (SE) and Raman spectroscopy are applied to study structural modification of glassy carbon, due to high intensity laser ablation. Two KrF lasers with different pulse durations (480 fs and 18 ns), an ArF (20 ns), and a frequency doubled Nd:YAG laser (8 ns) were applied to irradiate the surface of glassy carbon targets. The main characteristics of the different laser treatments are compared by introducing the volumetric fluence which takes into account the different absorption values at different wavelengths. SE showed the appearance of a modified layer on the ablated surfaces. In the case of the ns lasers the thickness of this layer was in the range of 10-60 nm, while in the case of fs laser it was less than 20 nm. In all cases the average refractive index (n) of the modified layers slightly decreased compared to the refractive index of glassy carbon. Increase in extinction coefficient (k) was observed in the cases of ArF and fs KrF laser treatment, while the k values decreased significantly in the cases of nanosecond pulse duration KrF and Nd:YAG laser treatments. In the Raman spectra of the ablated areas the characteristic D and G peaks were widened due to appearance of an amorphous phase. Both Raman spectroscopy and SE indicate that the irradiated areas show carbon nanoparticle formation in all cases.

Original languageEnglish
Pages (from-to)343-348
Number of pages6
JournalApplied Surface Science
Volume336
DOIs
Publication statusPublished - May 1 2015

    Fingerprint

Keywords

  • Glassy carbon
  • Laser processing
  • Raman spectroscopy
  • Spectroscopic ellipsometry

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Cite this