Spectral broadening of a 500W, 5mJ femtosecond laser

Steffen Hadrich, Peter Simon, Tamas Nagy, Andreas Blumenstein, Robert Klas, Joachim Buldt, Lars Henning Stark, Sven Breitkopf, Peter Jojart, Zoltan Varallyay, Karoly Osvay, Tino Eidam, Jens Limpert

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The ELI-ALPS facility requests lasers with parameters beyond current state-of-the-art [1]. One of the most challenging ones is the high repetition rate laser 2 (HR2), a carrier-envelope-phase stable laser system delivering 5mJ pulses at 100kHz repetition rate and with pulse durations of 6fs, which is currently under development at Active Fiber Systems GmbH. It uses a kW-class ytterbium doped femtosecond fiber-chirped-pulse amplifier system. To achieve the bandwidth required for few-cycle pulses significant nonlinear spectral broadening is necessary. The latter technology has seen rapid scaling both in terms of average power [2] and pulse energy [3,4]. Furthermore, by the introduction of stretched hollow capillaries [5] high-quality long waveguides became available, which is inevitable for upscaling the pulse energy. Despite first promising experiments with ytterbium-based laser systems the average power used in combination with stretched-hollow-core fibers has not exceeded a few Watt yet [6,7]. In this contribution, we present a significant up-scaling of the average power of stretched hollow-core-fibers by spectrally broaden 5mJ, 500W, 280fs pulses in a 4m long, 450μm inner diameter fiber to a bandwidth supporting sub-17fs pulses. The laser system used for this experiment is a fiber CPA that incorporates coherent combination of multiple main amplifier channels achieving 5mJ pulse energy at 100kHz repetition rate corresponding to 500W of average power and 290fs pulses [8]. The output beam was sent through a combination of a half-wave plate and a thin-film polarizer to provide arbitrary attenuation of the power and then coupled to the 4m long capillary with an inner diameter of 450μm. The capillary had a pressure gradient with vacuum at the entrance and 600mbar Ar at the output side. The fiber transmission was nearly constant over the full power range up to 500W. At the maximum power the spectrum was significantly broadened to a bandwidth supporting sub-17fs pulse duration at 3mJ energy and 300W average power (Fig.1).

Original languageEnglish
Title of host publication2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728104690
DOIs
Publication statusPublished - Jun 2019
Event2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Germany
Duration: Jun 23 2019Jun 27 2019

Publication series

Name2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019

Conference

Conference2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
CountryGermany
CityMunich
Period6/23/196/27/19

    Fingerprint

ASJC Scopus subject areas

  • Spectroscopy
  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Computer Networks and Communications

Cite this

Hadrich, S., Simon, P., Nagy, T., Blumenstein, A., Klas, R., Buldt, J., Stark, L. H., Breitkopf, S., Jojart, P., Varallyay, Z., Osvay, K., Eidam, T., & Limpert, J. (2019). Spectral broadening of a 500W, 5mJ femtosecond laser. In 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 [8873189] (2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CLEOE-EQEC.2019.8873189