Spatial and temporal expression of cone opsins during monkey retinal development

K. Bumsted, C. Jasoni, A. Szél, A. Hendrickson

Research output: Contribution to journalArticle

94 Citations (Scopus)


The primate retina requires a coordinated series of developmental events to form its specialized photoreceptor topography. In this study, the temporal expression of cone photoreceptor opsin was determined in Macaca monkey retina. Markers for mRNA and protein that recognize short wavelength (S) and long/medium wavelength (L/M) opsin were used to determine (1) the temporal and spatial patterns of opsin expression, (2) the spatial relationship between S and L/M cones at the time of initial opsin expression, and (3) the relative time of cone and rod opsin expression (Dorn et al. [1995] Invest. Ophthalmol. Vis. Sci. 36:2634-2651). Adult cone outer segments were recognized by either L/M or S opsin antiserum. Of all adult cone inner segments, 88-90% contained L/M opsin mRNA, whereas 10-12% contained S opsin mRNA. Fetal cones initially showed cell membrane as well as outer segment labeling for opsin protein, but cell membrane labeling disappeared by birth. No cones at any age contained markers for both S and L/M opsin mRNA or protein. S and L/M opsin protein appeared in the fovea at fetal day 75. Once opsin expression progressed beyond the fovea, both mRNA and protein for S opsin were consistently detected more peripherally than L/M opsin. Cones at the peripheral edge of S opsin expression had basal telodendria that appeared to reach toward neighboring cones. Because interactions between cone populations could organize the cone mosaic, the spatial relationship between S cones and the first cones to express L/M protein was analyzed quantitatively by using double-label immunocytochemistry. No consistent relationship was found between these two cone populations. Cones are generated at least 1 week before rods across monkey retina. However, rod opsin protein appears in and around the fovea at fetal day 66, 1 week before cone opsin protein. This suggests that independent local factors control differentiation in these two photoreceptor populations.

Original languageEnglish
Pages (from-to)117-134
Number of pages18
JournalJournal of Comparative Neurology
Issue number1
Publication statusPublished - Feb 3 1997



  • fetal
  • mRNA
  • photoreceptor
  • primate
  • retina

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this