Size of monochromatic components in local edge colorings

A. Gyárfás, Gábor N. Sárközy

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

An edge coloring of a graph is a local r coloring if the edges incident to any vertex are colored with at most r distinct colors. We determine the size of the largest monochromatic component that must occur in any local r coloring of a complete graph or a complete bipartite graph.

Original languageEnglish
Pages (from-to)2620-2622
Number of pages3
JournalDiscrete Mathematics
Volume308
Issue number12
DOIs
Publication statusPublished - Jun 28 2008

Fingerprint

Edge Coloring
Coloring
Colouring
Complete Bipartite Graph
Complete Graph
Distinct
Graph in graph theory
Vertex of a graph
Color

Keywords

  • Connected components
  • Local colorings

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Size of monochromatic components in local edge colorings. / Gyárfás, A.; Sárközy, Gábor N.

In: Discrete Mathematics, Vol. 308, No. 12, 28.06.2008, p. 2620-2622.

Research output: Contribution to journalArticle

Gyárfás, A. ; Sárközy, Gábor N. / Size of monochromatic components in local edge colorings. In: Discrete Mathematics. 2008 ; Vol. 308, No. 12. pp. 2620-2622.
@article{4e4dfff5f46f4d74acd4f046853b7915,
title = "Size of monochromatic components in local edge colorings",
abstract = "An edge coloring of a graph is a local r coloring if the edges incident to any vertex are colored with at most r distinct colors. We determine the size of the largest monochromatic component that must occur in any local r coloring of a complete graph or a complete bipartite graph.",
keywords = "Connected components, Local colorings",
author = "A. Gy{\'a}rf{\'a}s and S{\'a}rk{\"o}zy, {G{\'a}bor N.}",
year = "2008",
month = "6",
day = "28",
doi = "10.1016/j.disc.2007.06.008",
language = "English",
volume = "308",
pages = "2620--2622",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "12",

}

TY - JOUR

T1 - Size of monochromatic components in local edge colorings

AU - Gyárfás, A.

AU - Sárközy, Gábor N.

PY - 2008/6/28

Y1 - 2008/6/28

N2 - An edge coloring of a graph is a local r coloring if the edges incident to any vertex are colored with at most r distinct colors. We determine the size of the largest monochromatic component that must occur in any local r coloring of a complete graph or a complete bipartite graph.

AB - An edge coloring of a graph is a local r coloring if the edges incident to any vertex are colored with at most r distinct colors. We determine the size of the largest monochromatic component that must occur in any local r coloring of a complete graph or a complete bipartite graph.

KW - Connected components

KW - Local colorings

UR - http://www.scopus.com/inward/record.url?scp=41549133924&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=41549133924&partnerID=8YFLogxK

U2 - 10.1016/j.disc.2007.06.008

DO - 10.1016/j.disc.2007.06.008

M3 - Article

AN - SCOPUS:41549133924

VL - 308

SP - 2620

EP - 2622

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 12

ER -