Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Brillouin theorem has been generalized for the coupling strength parameter (a) extended non-relativistic electronic Hamiltonian (H+Hne+aHee). The mathematical case a=0 generates an orto-normalized set of single Slater determinants which can be used as basis set for configuration interactions (CI) calculations for the physical case a=1, removing the known restriction by the original Brillouin theorem and opening a new way to practice.

Original languageEnglish
Title of host publicationInternational Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018
EditorsT.E. Simos, T.E. Simos, T.E. Simos, T.E. Simos, Ch. Tsitouras, T.E. Simos
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735418547
DOIs
Publication statusPublished - Jul 24 2019
EventInternational Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018 - Rhodes, Greece
Duration: Sep 13 2018Sep 18 2018

Publication series

NameAIP Conference Proceedings
Volume2116
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

ConferenceInternational Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018
CountryGreece
CityRhodes
Period9/13/189/18/18

Fingerprint

determinants
electronics
theorems
configuration interaction
constrictions
parameter
calculation

Keywords

  • configuration interactions
  • coupling strength parameter
  • electron-electron repulsion energy participation in ground and excited states
  • generalization of Brillouin theorem
  • single determinant basis set
  • totally non-interacting reference system

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Plant Science
  • Physics and Astronomy(all)
  • Nature and Landscape Conservation

Cite this

Kristyán, S. (2019). Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem. In T. E. Simos, T. E. Simos, T. E. Simos, T. E. Simos, C. Tsitouras, & T. E. Simos (Eds.), International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018 [450061] (AIP Conference Proceedings; Vol. 2116). American Institute of Physics Inc.. https://doi.org/10.1063/1.5114528

Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem. / Kristyán, S.

International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018. ed. / T.E. Simos; T.E. Simos; T.E. Simos; T.E. Simos; Ch. Tsitouras; T.E. Simos. American Institute of Physics Inc., 2019. 450061 (AIP Conference Proceedings; Vol. 2116).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Kristyán, S 2019, Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem. in TE Simos, TE Simos, TE Simos, TE Simos, C Tsitouras & TE Simos (eds), International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018., 450061, AIP Conference Proceedings, vol. 2116, American Institute of Physics Inc., International Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018, Rhodes, Greece, 9/13/18. https://doi.org/10.1063/1.5114528
Kristyán S. Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem. In Simos TE, Simos TE, Simos TE, Simos TE, Tsitouras C, Simos TE, editors, International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018. American Institute of Physics Inc. 2019. 450061. (AIP Conference Proceedings). https://doi.org/10.1063/1.5114528
Kristyán, S. / Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem. International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018. editor / T.E. Simos ; T.E. Simos ; T.E. Simos ; T.E. Simos ; Ch. Tsitouras ; T.E. Simos. American Institute of Physics Inc., 2019. (AIP Conference Proceedings).
@inproceedings{9cff6ff91c484220a6cb81f5bc0689da,
title = "Single determinant basis set for the non-relativistic electronic Schr{\"o}dinger equation using the coupling strength parameter generalized Brillouin theorem",
abstract = "The Brillouin theorem has been generalized for the coupling strength parameter (a) extended non-relativistic electronic Hamiltonian (H∇+Hne+aHee). The mathematical case a=0 generates an orto-normalized set of single Slater determinants which can be used as basis set for configuration interactions (CI) calculations for the physical case a=1, removing the known restriction by the original Brillouin theorem and opening a new way to practice.",
keywords = "configuration interactions, coupling strength parameter, electron-electron repulsion energy participation in ground and excited states, generalization of Brillouin theorem, single determinant basis set, totally non-interacting reference system",
author = "S. Kristy{\'a}n",
year = "2019",
month = "7",
day = "24",
doi = "10.1063/1.5114528",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "T.E. Simos and T.E. Simos and T.E. Simos and T.E. Simos and Ch. Tsitouras and T.E. Simos",
booktitle = "International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018",

}

TY - GEN

T1 - Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem

AU - Kristyán, S.

PY - 2019/7/24

Y1 - 2019/7/24

N2 - The Brillouin theorem has been generalized for the coupling strength parameter (a) extended non-relativistic electronic Hamiltonian (H∇+Hne+aHee). The mathematical case a=0 generates an orto-normalized set of single Slater determinants which can be used as basis set for configuration interactions (CI) calculations for the physical case a=1, removing the known restriction by the original Brillouin theorem and opening a new way to practice.

AB - The Brillouin theorem has been generalized for the coupling strength parameter (a) extended non-relativistic electronic Hamiltonian (H∇+Hne+aHee). The mathematical case a=0 generates an orto-normalized set of single Slater determinants which can be used as basis set for configuration interactions (CI) calculations for the physical case a=1, removing the known restriction by the original Brillouin theorem and opening a new way to practice.

KW - configuration interactions

KW - coupling strength parameter

KW - electron-electron repulsion energy participation in ground and excited states

KW - generalization of Brillouin theorem

KW - single determinant basis set

KW - totally non-interacting reference system

UR - http://www.scopus.com/inward/record.url?scp=85069970062&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069970062&partnerID=8YFLogxK

U2 - 10.1063/1.5114528

DO - 10.1063/1.5114528

M3 - Conference contribution

AN - SCOPUS:85069970062

T3 - AIP Conference Proceedings

BT - International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018

A2 - Simos, T.E.

A2 - Simos, T.E.

A2 - Simos, T.E.

A2 - Simos, T.E.

A2 - Tsitouras, Ch.

A2 - Simos, T.E.

PB - American Institute of Physics Inc.

ER -