Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Brillouin theorem has been generalized for the coupling strength parameter (a) extended non-relativistic electronic Hamiltonian (H+Hne+aHee). The mathematical case a=0 generates an orto-normalized set of single Slater determinants which can be used as basis set for configuration interactions (CI) calculations for the physical case a=1, removing the known restriction by the original Brillouin theorem and opening a new way to practice.

Original languageEnglish
Title of host publicationInternational Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018
EditorsT.E. Simos, T.E. Simos, T.E. Simos, T.E. Simos, Ch. Tsitouras, T.E. Simos
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735418547
DOIs
Publication statusPublished - Jul 24 2019
EventInternational Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018 - Rhodes, Greece
Duration: Sep 13 2018Sep 18 2018

Publication series

NameAIP Conference Proceedings
Volume2116
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

ConferenceInternational Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018
CountryGreece
CityRhodes
Period9/13/189/18/18

Keywords

  • configuration interactions
  • coupling strength parameter
  • electron-electron repulsion energy participation in ground and excited states
  • generalization of Brillouin theorem
  • single determinant basis set
  • totally non-interacting reference system

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Plant Science
  • Physics and Astronomy(all)
  • Nature and Landscape Conservation

Fingerprint Dive into the research topics of 'Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem'. Together they form a unique fingerprint.

  • Cite this

    Kristyán, S. (2019). Single determinant basis set for the non-relativistic electronic Schrödinger equation using the coupling strength parameter generalized Brillouin theorem. In T. E. Simos, T. E. Simos, T. E. Simos, T. E. Simos, C. Tsitouras, & T. E. Simos (Eds.), International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018 [450061] (AIP Conference Proceedings; Vol. 2116). American Institute of Physics Inc.. https://doi.org/10.1063/1.5114528