Simple in-line postcolumn oxidation and derivatization for the simultaneous analysis of ascorbic and dehydroascorbic acids in foods

A. Bognár, H. Daood

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

A new analytical procedure for the simultaneous determination of L-ascorbic acid (AA), isoascorbic acid (IAA), L-dehydroascorbic acid (DHAA), and isodehydroascorbic acid (IDHAA) in food by high-performance liquid chromatography (HPLC) is developed. After separation on an HPLC column, an in-line oxidation of AA and IAA to DHAA and IDHAA, respectively, is performed on a short column of activated charcoal. The dehydroascorbic acids are derivatized with a 1,2-phenylenediamine solution in a heated capillary Tefzel reactor into fluorescent quinoxaline compounds and monitored fluorometrically. The chromatographic method provides good separation of LAA, LDHAA, and their diastereoisomers in a relatively short time (∼10 min). After optimization of postcolumn derivatization conditions, calibration runs and recovery tests are performed. The fluorescent response in terms of peak area is highly proportional to the concentration of all derivatives examined over a range of 0.1 to 100 μg/mL solution for LAA, LDHAA, IAA, and IDHAA. Recoveries were in the range of 97 to 103%. The detection limit is 0.1 mg of each ascorbic acid derivative per 100 g food. A wide variety of foods (fruits, fruit juices, vegetables, vegetable products, milk, liver, and sausage) are analyzed by the developed procedure. The Vitamin C (LAA and LDHA) contents determined according to the present analytical method are in the same order of magnitude as the result of precolumn derivatization and the fluorometric methods. The described method is a highly specific procedure for determining Vitamin C in food. It is simple to handle, only slightly susceptible to disturbance, perfectly suitable for serial determinations, and yields reproducible results.

Original languageEnglish
Pages (from-to)162-168
Number of pages7
JournalJournal of Chromatographic Science
Volume38
Issue number4
Publication statusPublished - Apr 2000

Fingerprint

Dehydroascorbic Acid
Ascorbic Acid
Food
Oxidation
Vegetables
High performance liquid chromatography
Acids
Fruit juices
Derivatives
Recovery
Quinoxalines
Charcoal
High Pressure Liquid Chromatography
Fruits
Liver
Calibration
Limit of Detection
Fruit
Milk
isoascorbic acid

ASJC Scopus subject areas

  • Analytical Chemistry
  • Clinical Biochemistry

Cite this

@article{d5c0e66db25b4efa90e4a5f3f2959a1a,
title = "Simple in-line postcolumn oxidation and derivatization for the simultaneous analysis of ascorbic and dehydroascorbic acids in foods",
abstract = "A new analytical procedure for the simultaneous determination of L-ascorbic acid (AA), isoascorbic acid (IAA), L-dehydroascorbic acid (DHAA), and isodehydroascorbic acid (IDHAA) in food by high-performance liquid chromatography (HPLC) is developed. After separation on an HPLC column, an in-line oxidation of AA and IAA to DHAA and IDHAA, respectively, is performed on a short column of activated charcoal. The dehydroascorbic acids are derivatized with a 1,2-phenylenediamine solution in a heated capillary Tefzel reactor into fluorescent quinoxaline compounds and monitored fluorometrically. The chromatographic method provides good separation of LAA, LDHAA, and their diastereoisomers in a relatively short time (∼10 min). After optimization of postcolumn derivatization conditions, calibration runs and recovery tests are performed. The fluorescent response in terms of peak area is highly proportional to the concentration of all derivatives examined over a range of 0.1 to 100 μg/mL solution for LAA, LDHAA, IAA, and IDHAA. Recoveries were in the range of 97 to 103{\%}. The detection limit is 0.1 mg of each ascorbic acid derivative per 100 g food. A wide variety of foods (fruits, fruit juices, vegetables, vegetable products, milk, liver, and sausage) are analyzed by the developed procedure. The Vitamin C (LAA and LDHA) contents determined according to the present analytical method are in the same order of magnitude as the result of precolumn derivatization and the fluorometric methods. The described method is a highly specific procedure for determining Vitamin C in food. It is simple to handle, only slightly susceptible to disturbance, perfectly suitable for serial determinations, and yields reproducible results.",
author = "A. Bogn{\'a}r and H. Daood",
year = "2000",
month = "4",
language = "English",
volume = "38",
pages = "162--168",
journal = "Journal of Chromatographic Science",
issn = "0021-9665",
publisher = "Preston Publications",
number = "4",

}

TY - JOUR

T1 - Simple in-line postcolumn oxidation and derivatization for the simultaneous analysis of ascorbic and dehydroascorbic acids in foods

AU - Bognár, A.

AU - Daood, H.

PY - 2000/4

Y1 - 2000/4

N2 - A new analytical procedure for the simultaneous determination of L-ascorbic acid (AA), isoascorbic acid (IAA), L-dehydroascorbic acid (DHAA), and isodehydroascorbic acid (IDHAA) in food by high-performance liquid chromatography (HPLC) is developed. After separation on an HPLC column, an in-line oxidation of AA and IAA to DHAA and IDHAA, respectively, is performed on a short column of activated charcoal. The dehydroascorbic acids are derivatized with a 1,2-phenylenediamine solution in a heated capillary Tefzel reactor into fluorescent quinoxaline compounds and monitored fluorometrically. The chromatographic method provides good separation of LAA, LDHAA, and their diastereoisomers in a relatively short time (∼10 min). After optimization of postcolumn derivatization conditions, calibration runs and recovery tests are performed. The fluorescent response in terms of peak area is highly proportional to the concentration of all derivatives examined over a range of 0.1 to 100 μg/mL solution for LAA, LDHAA, IAA, and IDHAA. Recoveries were in the range of 97 to 103%. The detection limit is 0.1 mg of each ascorbic acid derivative per 100 g food. A wide variety of foods (fruits, fruit juices, vegetables, vegetable products, milk, liver, and sausage) are analyzed by the developed procedure. The Vitamin C (LAA and LDHA) contents determined according to the present analytical method are in the same order of magnitude as the result of precolumn derivatization and the fluorometric methods. The described method is a highly specific procedure for determining Vitamin C in food. It is simple to handle, only slightly susceptible to disturbance, perfectly suitable for serial determinations, and yields reproducible results.

AB - A new analytical procedure for the simultaneous determination of L-ascorbic acid (AA), isoascorbic acid (IAA), L-dehydroascorbic acid (DHAA), and isodehydroascorbic acid (IDHAA) in food by high-performance liquid chromatography (HPLC) is developed. After separation on an HPLC column, an in-line oxidation of AA and IAA to DHAA and IDHAA, respectively, is performed on a short column of activated charcoal. The dehydroascorbic acids are derivatized with a 1,2-phenylenediamine solution in a heated capillary Tefzel reactor into fluorescent quinoxaline compounds and monitored fluorometrically. The chromatographic method provides good separation of LAA, LDHAA, and their diastereoisomers in a relatively short time (∼10 min). After optimization of postcolumn derivatization conditions, calibration runs and recovery tests are performed. The fluorescent response in terms of peak area is highly proportional to the concentration of all derivatives examined over a range of 0.1 to 100 μg/mL solution for LAA, LDHAA, IAA, and IDHAA. Recoveries were in the range of 97 to 103%. The detection limit is 0.1 mg of each ascorbic acid derivative per 100 g food. A wide variety of foods (fruits, fruit juices, vegetables, vegetable products, milk, liver, and sausage) are analyzed by the developed procedure. The Vitamin C (LAA and LDHA) contents determined according to the present analytical method are in the same order of magnitude as the result of precolumn derivatization and the fluorometric methods. The described method is a highly specific procedure for determining Vitamin C in food. It is simple to handle, only slightly susceptible to disturbance, perfectly suitable for serial determinations, and yields reproducible results.

UR - http://www.scopus.com/inward/record.url?scp=0034174839&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034174839&partnerID=8YFLogxK

M3 - Article

C2 - 10766483

AN - SCOPUS:0034174839

VL - 38

SP - 162

EP - 168

JO - Journal of Chromatographic Science

JF - Journal of Chromatographic Science

SN - 0021-9665

IS - 4

ER -