Sets with no solutions to x + y = 3z

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

This short note gives an upper bound on the measure of sets A ⊂ [0, 1] such that x + y = 3. z has no solutions in A.

Original languageEnglish
Pages (from-to)1411-1414
Number of pages4
JournalEuropean Journal of Combinatorics
Volume34
Issue number8
DOIs
Publication statusPublished - Nov 2013

Fingerprint

Upper bound

ASJC Scopus subject areas

  • Geometry and Topology
  • Theoretical Computer Science
  • Computational Theory and Mathematics

Cite this

Sets with no solutions to x + y = 3z. / Matolcsi, M.; Ruzsa, I.

In: European Journal of Combinatorics, Vol. 34, No. 8, 11.2013, p. 1411-1414.

Research output: Contribution to journalArticle

@article{c7788f7c55e945af9c960917d155c7b8,
title = "Sets with no solutions to x + y = 3z",
abstract = "This short note gives an upper bound on the measure of sets A ⊂ [0, 1] such that x + y = 3. z has no solutions in A.",
author = "M. Matolcsi and I. Ruzsa",
year = "2013",
month = "11",
doi = "10.1016/j.ejc.2013.05.024",
language = "English",
volume = "34",
pages = "1411--1414",
journal = "European Journal of Combinatorics",
issn = "0195-6698",
publisher = "Academic Press Inc.",
number = "8",

}

TY - JOUR

T1 - Sets with no solutions to x + y = 3z

AU - Matolcsi, M.

AU - Ruzsa, I.

PY - 2013/11

Y1 - 2013/11

N2 - This short note gives an upper bound on the measure of sets A ⊂ [0, 1] such that x + y = 3. z has no solutions in A.

AB - This short note gives an upper bound on the measure of sets A ⊂ [0, 1] such that x + y = 3. z has no solutions in A.

UR - http://www.scopus.com/inward/record.url?scp=84881022666&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84881022666&partnerID=8YFLogxK

U2 - 10.1016/j.ejc.2013.05.024

DO - 10.1016/j.ejc.2013.05.024

M3 - Article

AN - SCOPUS:84881022666

VL - 34

SP - 1411

EP - 1414

JO - European Journal of Combinatorics

JF - European Journal of Combinatorics

SN - 0195-6698

IS - 8

ER -