Abstract
The molecular interactions between PARP I, cdc2-kinase, PKC and histone H1 were determined with the aid of the common phosphate acceptor function of histone H1 to both kinases. PKC phosphorylates both histone H1 and PARP I and PARP I augments the acceptor function of histone H1. When both acceptors (PARP I and histone H1) are present an apparent distributive phosphorylation of both acceptors takes place. In contrast, cdc2-kinase only phosphorylates histone H1, and the activation of this reaction by PARP I does not involve PARP I-cdc2-kinase binding only PARP I-histone H1 association. Since the phosphorylation of histone H1 by PKC is a model reaction with no apparent physiologic consequences, the PARP I activated phosphorylation of histone H1 by cdc2-kinase, by contrast, reflects a physiologically meaningful regulation of the linker histone by a cyclin dependent kinase (cdc2-kinase). The increased phosphorylation of histone H1 by cdc2-kinase following PARP I-histone H1 binding results in the appearance of new phosphorylated histone H1 polypeptides as measured by proteolytic digestion and re-electrophoresis of cdc2-kinase phosphorylated polypeptides, indicating a probable conformational change in histone H1, following PARP I binding. The cell biologic significance of this reaction in PARP I ligand-induced enzyme induction is briefly analysed.
Original language | English |
---|---|
Pages (from-to) | 691-693 |
Number of pages | 3 |
Journal | International Journal of Molecular Medicine |
Volume | 8 |
Issue number | 6 |
Publication status | Published - Dec 2001 |
Fingerprint
ASJC Scopus subject areas
- Genetics
Cite this
Selective augmentation of histone H1 phosphorylation sites by interaction of poly(ADP-ribose) polymerase and cdc2-kinase : comparison with protein kinase C. / Bauer, P.; Buki, K. G.; Kun, E.
In: International Journal of Molecular Medicine, Vol. 8, No. 6, 12.2001, p. 691-693.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Selective augmentation of histone H1 phosphorylation sites by interaction of poly(ADP-ribose) polymerase and cdc2-kinase
T2 - comparison with protein kinase C.
AU - Bauer, P.
AU - Buki, K. G.
AU - Kun, E.
PY - 2001/12
Y1 - 2001/12
N2 - The molecular interactions between PARP I, cdc2-kinase, PKC and histone H1 were determined with the aid of the common phosphate acceptor function of histone H1 to both kinases. PKC phosphorylates both histone H1 and PARP I and PARP I augments the acceptor function of histone H1. When both acceptors (PARP I and histone H1) are present an apparent distributive phosphorylation of both acceptors takes place. In contrast, cdc2-kinase only phosphorylates histone H1, and the activation of this reaction by PARP I does not involve PARP I-cdc2-kinase binding only PARP I-histone H1 association. Since the phosphorylation of histone H1 by PKC is a model reaction with no apparent physiologic consequences, the PARP I activated phosphorylation of histone H1 by cdc2-kinase, by contrast, reflects a physiologically meaningful regulation of the linker histone by a cyclin dependent kinase (cdc2-kinase). The increased phosphorylation of histone H1 by cdc2-kinase following PARP I-histone H1 binding results in the appearance of new phosphorylated histone H1 polypeptides as measured by proteolytic digestion and re-electrophoresis of cdc2-kinase phosphorylated polypeptides, indicating a probable conformational change in histone H1, following PARP I binding. The cell biologic significance of this reaction in PARP I ligand-induced enzyme induction is briefly analysed.
AB - The molecular interactions between PARP I, cdc2-kinase, PKC and histone H1 were determined with the aid of the common phosphate acceptor function of histone H1 to both kinases. PKC phosphorylates both histone H1 and PARP I and PARP I augments the acceptor function of histone H1. When both acceptors (PARP I and histone H1) are present an apparent distributive phosphorylation of both acceptors takes place. In contrast, cdc2-kinase only phosphorylates histone H1, and the activation of this reaction by PARP I does not involve PARP I-cdc2-kinase binding only PARP I-histone H1 association. Since the phosphorylation of histone H1 by PKC is a model reaction with no apparent physiologic consequences, the PARP I activated phosphorylation of histone H1 by cdc2-kinase, by contrast, reflects a physiologically meaningful regulation of the linker histone by a cyclin dependent kinase (cdc2-kinase). The increased phosphorylation of histone H1 by cdc2-kinase following PARP I-histone H1 binding results in the appearance of new phosphorylated histone H1 polypeptides as measured by proteolytic digestion and re-electrophoresis of cdc2-kinase phosphorylated polypeptides, indicating a probable conformational change in histone H1, following PARP I binding. The cell biologic significance of this reaction in PARP I ligand-induced enzyme induction is briefly analysed.
UR - http://www.scopus.com/inward/record.url?scp=0035650657&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035650657&partnerID=8YFLogxK
M3 - Article
C2 - 11712087
AN - SCOPUS:0035650657
VL - 8
SP - 691
EP - 693
JO - International Journal of Molecular Medicine
JF - International Journal of Molecular Medicine
SN - 1107-3756
IS - 6
ER -