Secrecy generation for multiaccess channel models

Imre Csiszár, Prakash Narayan

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Shannon theoretic secret key generation by several parties is considered for models in which a secure noisy channel with multiple input and output terminals and a public noiseless channel of unlimited capacity are available for accomplishing this goal. The secret key is generated for a set A of terminals of the noisy channel, with the remaining terminals (if any) cooperating in this task through their public communication. Single-letter lower and upper bounds for secrecy capacities are obtained when secrecy is required from an eavesdropper that observes only the public communication and perhaps also a set of terminals disjoint from A. These bounds coincide in special cases, but not in general. We also consider models in which different sets of terminals share multiple keys, one for the terminals in each set with secrecy required from the eavesdropper as well as from the terminals not in this set. Partial results include showing links among the associated secrecy capacity region for multiple keys, the transmission capacity region of the multiple access channel defined by the secure noisy channel, and achievable rates for a single secret key for all the terminals.

Original languageEnglish
Article number6290395
Pages (from-to)17-31
Number of pages15
JournalIEEE Transactions on Information Theory
Volume59
Issue number1
DOIs
Publication statusPublished - Jan 7 2013

Keywords

  • Multiaccess channel
  • multiple keys
  • private key
  • private key capacity region
  • secrecy capacity
  • secret key
  • source emulation

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint Dive into the research topics of 'Secrecy generation for multiaccess channel models'. Together they form a unique fingerprint.

  • Cite this