Seasonal variations of global lightning activity extracted from Schumann resonances using a genetic algorithm method

Heng Yang, Victor P. Pasko, Gabriella Sátori

Research output: Contribution to journalArticle

13 Citations (Scopus)


A three-dimensional Finite Difference Time Domain (FDTD) model of the Earth-ionosphere cavity with a realistic conductivity profile is employed to study the global lightning activity using the observed intensity variations of Schumann resonances (SR). Comparison of the results derived from our FDTD model and the previous studies by other authors on related subjects shows that Schumann resonance is a good probe to indicate the seasonal variations of lightning activity in three main thunderstorm regions (Africa, southeast Asia, and South America). An inverse method based on genetic algorithms is developed to extract information on lightning intensity in these three regions from observed SR intensity data. Seasonal variations of the lightning activity in three thunderstorm centers are clearly observed in our results. Different SR frequency variations associated with seasonal variations of global lighting activity are also discussed.

Original languageEnglish
Article numberD01103
JournalJournal of Geophysical Research Atmospheres
Issue number1
Publication statusPublished - Jan 16 2009


ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this