Roles of interleukin-12 and gamma interferon in murine Chlamydia pneumoniae infection

Yuemei Geng, Klara Berencsi, Zsofia Gyulai, Tibor Valyi-Nagy, Eva Gonczol, Giorgio Trinchieri

Research output: Contribution to journalArticle

52 Citations (Scopus)


BALB/c and strain 129 mice infected intranasally with Chlamydia pneumoniae displayed a moderate-to-severe inflammation in the lungs and produced interleukin-12 (IL-12), gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-10, with peak levels on days 1 to 3 postinfection (p.i.), returning to basal levels by day 16 p.i. Anti-IL-12 treatment resulted in less-severe pathological changes but higher bacterial titers on days 3 and 7 p.i. By day 16 p.i., the inflammatory responses of control antibody-treated mice subsided. The bacterial titers of both anti-IL- 12- and control antibody-treated mice decreased within 3 weeks to marginally detectable levels. Anti-IL-12 treatment significantly reduced lung IFN-γ, production and in vitro spleen cell IFN-γ production in response to either C. pneumoniae or concanavalin A. In γ-irradiated infected mice, cytokine production was delayed, and this delay correlated with high bacterial titers in the lungs. Following C. pneumoniae infection, 129 mice lacking the IFN-γ receptor α chain gene (G129 mice) produced similar IL-12 levels and exhibited similarly severe pathological changes but had higher bacterial titers than 129 mice. However, by day 45 p.i., bacterial titers became undetectable in both wild-type 129 and G129 mice. Thus, during C. pneumoniae lung infection, IL-12, more than IFN-γ, plays a role in pulmonary-cell infiltration. IFN-γ and IL-12, acting mostly through its induction of IFN-γ and Th1 responses, play an important role in controlling acute C. pneumoniae infection in the lungs, but eventually all mice control the infection to undetectable levels by IL-12- and IFN-γ-independent mechanisms.

Original languageEnglish
Pages (from-to)2245-2253
Number of pages9
JournalInfection and Immunity
Issue number4
Publication statusPublished - Apr 2000

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Roles of interleukin-12 and gamma interferon in murine Chlamydia pneumoniae infection'. Together they form a unique fingerprint.

  • Cite this