Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixX gene

I. Dusha, S. Kovalenko, Z. Banfalvi, A. Kondorosi

Research output: Contribution to journalArticle

32 Citations (Scopus)


Two of the three plasmids of the wild-type Rhizobium meliloti 41 (pRme41a and pRme41c) carry a copy of ISRm2, a 2.7-kilobase-long transposable element. ISRm2 is terminated by 22-base-pair (bp) inverted repeat sequences, exhibiting some homology to the inverted repeats of elements generating 9-bp target sequence duplication. Transposition of ISRm2 results in a duplication of 8 bp in length, rather rare among transposable elements. DNA sequences homologous to an internal fragment of ISRm2 were found in several Rhizobium species. Transposition of ISRm2 into fixation and nodulation genes located on the symbiotic plasmid pRme41b was detected at a high frequency. Exact locations of two copies of ISRm2 which transposed into the nod-nif region on the megaplasmid were determined. In one case, integration into the protein-coding region of the hsnD gene that determines a host specificity function of nodulation occurred. In the other mutant, ISRm2 was localized upstream of nifA, where a short open reading frame coding for a new fix gene (fixX) was identified. The product of fixX is a ferredoxin carrying a characteristic cluster of cysteine residues. On the basis of the observation that the arrangement of the ISRm2 copies is identical in the free-living wild-type cells and in nitrogen-fixing nodules, we concluded that the involvement of ISRm2 transposition in the development of nitrogen-fixing symbiosis is unlikely.

Original languageEnglish
Pages (from-to)1403-1409
Number of pages7
JournalJournal of bacteriology
Issue number4
Publication statusPublished - Jan 1 1987


ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Cite this