Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons

Imre Farkas, Imre Kalló, Levente Deli, Barbara Vida, Erik Hrabovszky, Csaba Fekete, Suzanne M. Moenter, Masahiko Watanabe, Zsolt Liposits

Research output: Contribution to journalArticle

65 Citations (Scopus)

Abstract

Cannabinoids suppress fertility via reducing hypothalamic GnRH output. γ-Aminobutyric acid (GABA)A receptor (GABAA-R)- mediated transmission is a major input to GnRH cells that can be excitatory. We hypothesized that cannabinoids act via inhibiting GABAergic input. We performed loose-patch electrophysiological studies of acute slices from adult male GnRH-green fluorescent protein transgenic mice. Bath application of type 1 cannabinoid receptor (CB1) agonist WIN55,212 decreased GnRH neuron firing rate. This action was detectable in presence of the glutamate receptor antagonist kynurenic acid but disappeared when bicuculline was also present, indicating GABAA-R involvement. In immunocytochemical experiments, CB1-immunoreactive axons formed contacts with GnRH neurons and a subset established symmetric synapses characteristic of GABAergic neurotransmission. Functional studies were continued with whole-cell patch-clamp electrophysiology in presence of tetrodotoxin. WIN55,212 decreased the frequency of GABA A-R-mediated miniature postsynaptic currents (mPSCs) (reflecting spontaneous vesicle fusion), which was prevented with the CB1 antagonist AM251, indicating collectively that activation of presynaptic CB1 inhibits GABA release. AM251 alone increased mPSC frequency, providing evidence that endocannabinoids tonically inhibit GABAA-R drive onto GnRH neurons. Increased mPSC frequency was absent when diacylglycerol lipase was blocked intracellularly with tetrahydrolipstatin, showing that tonic inhibition is caused by 2-arachidonoylglycerol production of GnRH neurons. CdCl2 in extracellular solution can maintain both action potentials and spontaneous vesicle fusion. Under these conditions, when endocannabinoid-mediated blockade of spontaneous vesicle fusion was blocked with AM251, GnRH neuron firing increased, revealing an endogenous endocannabinoid brake on GnRH neuron firing. Retrograde endocannabinoid signaling may represent an important mechanism under physiological and pathological conditions whereby GnRH neurons regulate their excitatory GABAergic inputs.

Original languageEnglish
Pages (from-to)5818-5829
Number of pages12
JournalEndocrinology
Volume151
Issue number12
DOIs
Publication statusPublished - Dec 2010

ASJC Scopus subject areas

  • Endocrinology

Fingerprint Dive into the research topics of 'Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons'. Together they form a unique fingerprint.

  • Cite this