Restricted convergence of the inverse continuous wavelet transform

Research output: Contribution to journalArticle

Abstract

Using summability theory, we obtain restricted convergence of the inverse continuous wavelet transform at Lebesgue points for functions from the Lp and Wiener amalgam spaces.

Original languageEnglish
Pages (from-to)535-547
Number of pages13
JournalActa Scientiarum Mathematicarum
Volume81
Issue number3-4
DOIs
Publication statusPublished - 2015

Fingerprint

Wiener Amalgam Spaces
Lebesgue Point
Mercury amalgams
Continuous Wavelet Transform
Summability
Wavelet transforms

Keywords

  • Continuous wavelet transform
  • Inversion formula
  • Restricted convergence
  • Wiener amalgam spaces
  • θ-summability

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

Cite this

Restricted convergence of the inverse continuous wavelet transform. / Weisz, F.

In: Acta Scientiarum Mathematicarum, Vol. 81, No. 3-4, 2015, p. 535-547.

Research output: Contribution to journalArticle

@article{97981fe3a5c14a8ab77b1bcf0bbbd0b2,
title = "Restricted convergence of the inverse continuous wavelet transform",
abstract = "Using summability theory, we obtain restricted convergence of the inverse continuous wavelet transform at Lebesgue points for functions from the Lp and Wiener amalgam spaces.",
keywords = "Continuous wavelet transform, Inversion formula, Restricted convergence, Wiener amalgam spaces, θ-summability",
author = "F. Weisz",
year = "2015",
doi = "10.14232/actasm-015-530-8",
language = "English",
volume = "81",
pages = "535--547",
journal = "Acta Scientiarum Mathematicarum",
issn = "0001-6969",
publisher = "University of Szeged",
number = "3-4",

}

TY - JOUR

T1 - Restricted convergence of the inverse continuous wavelet transform

AU - Weisz, F.

PY - 2015

Y1 - 2015

N2 - Using summability theory, we obtain restricted convergence of the inverse continuous wavelet transform at Lebesgue points for functions from the Lp and Wiener amalgam spaces.

AB - Using summability theory, we obtain restricted convergence of the inverse continuous wavelet transform at Lebesgue points for functions from the Lp and Wiener amalgam spaces.

KW - Continuous wavelet transform

KW - Inversion formula

KW - Restricted convergence

KW - Wiener amalgam spaces

KW - θ-summability

UR - http://www.scopus.com/inward/record.url?scp=84953870560&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84953870560&partnerID=8YFLogxK

U2 - 10.14232/actasm-015-530-8

DO - 10.14232/actasm-015-530-8

M3 - Article

AN - SCOPUS:84953870560

VL - 81

SP - 535

EP - 547

JO - Acta Scientiarum Mathematicarum

JF - Acta Scientiarum Mathematicarum

SN - 0001-6969

IS - 3-4

ER -