Regulation and roles for alternative pathways of hexose metabolism in plants

Clanton C. Black, Laszlo Mustardy, S. S. Sung, P. P. Kormaník, D. ‐P Xu, Nachman Paz

Research output: Contribution to journalArticle

93 Citations (Scopus)

Abstract

Plant cells have two cytoplasmic pathways of glycolysis and gluconeogenesis for the reversible interconversion of fructose 6‐phosphate (F‐6‐P) and fructose 1,6‐bisphosphate (F‐1,6‐P2). One pathway is described as a maintenance pathway that is catalyzed by a nucleotide triphosphate‐dependent phosphofructokinase (EC 2.7.1.11; ATP‐PFK) glycolytically and a F‐1,6 bisphosphatase (EC 3.1.3.11) gluconeogenically. These are non‐equilibrium reactions that are energy consuming. The second pathway, described as an adaptive pathway, is catalyzed by a readily reversible pyrophosphate‐dependent phosphofructokinase (EC 2.7.1.90; PP‐PFK) in an equilibrium reaction that conserves energy through the utilization and the synthesis of pyrophosphate. A constitutive regulator cycle is also present for the synthesis and hydrolysis of fructose 2,6‐bisphosphate (F‐2,6‐P2) via a 2‐kinase and a 2‐phosphatase, respectively. The pathway catalyzed by the ATP‐PFK and F‐1,6‐bisphosphatase, the maintenance pathway, is fairly constant in maximum activity in various plant tissues and shows less regulation by F‐2,6‐P2. Plants use F‐2,6‐P2 initially to regulate the adaptive pathway at the reversible PPi‐PFK step. The adaptive pathway, catalyzed by PPi‐PFK, varies in maximum activity with a variety of phenomena such as plant development or changing biological and physical environments. Plants can change F‐2,6‐P2 levels rapidly, in less than 1 min when subjected to rapid environmental change, or change levels slowly over periods of hours and days as tissues develop. Both types of change enable plants to cope with the environmental and developmental changes that occur during their lifetimes. The two pathways of sugar metabolism can be efficiently linked by the cycling of uridylates and pyrophosphate required for sucrose breakdown via a proposed sucrose synthase pathway. The breakdown of sucrose via the sucrose synthase pathway requires half the net energy of breakdown via the invertase pathway. Pyrophosphate occurs in plant tissues as a substrate pool for biosynthetic reactions such as the PPi‐PFK or uridine diphosphate glucose pyrophosphorylase (EC 2.7.7.9; UDPG pyrophosphorylase) that function in the breakdown of imported sucrose. Also, pyrophosphate links the two glycolytic/gluco‐neogenic pathways; and in a reciprocal manner pyrophosphate is produced as an energy source during gluconeogenic carbon flow from F‐1,6‐P2 toward sucrose synthesis.

Original languageEnglish
Pages (from-to)387-394
Number of pages8
JournalPhysiologia Plantarum
Volume69
Issue number2
DOIs
Publication statusPublished - Feb 1987

Keywords

  • F‐1,6‐P
  • F‐2,6‐P
  • F‐6‐P
  • UDP‐glucose pyrophosphorylase
  • gluconeogenesis
  • glycolysis
  • invertase
  • pyrophosphate
  • sucrose breakdown
  • sucrose synthase

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science
  • Cell Biology

Fingerprint Dive into the research topics of 'Regulation and roles for alternative pathways of hexose metabolism in plants'. Together they form a unique fingerprint.

  • Cite this