Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions

Dávid Mester, Péter R. Nagy, M. Kállay

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has been developed for the evaluation of excitation energies. The method is based on the simultaneous truncation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation. For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for each excited state using the average of the second-order Møller-Plesset (MP2) and the corresponding configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a triple-zeta basis set, about 60% of the virtual MOs can be dropped, while the size of the fitting basis can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of the solution of the CC2 equations, which are in our approach about as expensive as the evaluation of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate that the new approach enables the efficient computation of CC2 excitation energies for excited states of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis sets.

Original languageEnglish
Article number194102
JournalJournal of Chemical Physics
Volume146
Issue number19
DOIs
Publication statusPublished - May 21 2017

Fingerprint

Excitation energy
Molecular orbitals
costs
Excited states
orbitals
excitation
Costs
configuration interaction
molecular orbitals
evaluation
Atoms
Molecules
approximation
occupation
energy
atoms
molecules

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this

Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions. / Mester, Dávid; Nagy, Péter R.; Kállay, M.

In: Journal of Chemical Physics, Vol. 146, No. 19, 194102, 21.05.2017.

Research output: Contribution to journalArticle

@article{1e7d802dedc7462599d68e40f5c23ecf,
title = "Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions",
abstract = "A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has been developed for the evaluation of excitation energies. The method is based on the simultaneous truncation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation. For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for each excited state using the average of the second-order M{\o}ller-Plesset (MP2) and the corresponding configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. K{\'a}llay, J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a triple-zeta basis set, about 60{\%} of the virtual MOs can be dropped, while the size of the fitting basis can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of the solution of the CC2 equations, which are in our approach about as expensive as the evaluation of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate that the new approach enables the efficient computation of CC2 excitation energies for excited states of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis sets.",
author = "D{\'a}vid Mester and Nagy, {P{\'e}ter R.} and M. K{\'a}llay",
year = "2017",
month = "5",
day = "21",
doi = "10.1063/1.4983277",
language = "English",
volume = "146",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "19",

}

TY - JOUR

T1 - Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions

AU - Mester, Dávid

AU - Nagy, Péter R.

AU - Kállay, M.

PY - 2017/5/21

Y1 - 2017/5/21

N2 - A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has been developed for the evaluation of excitation energies. The method is based on the simultaneous truncation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation. For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for each excited state using the average of the second-order Møller-Plesset (MP2) and the corresponding configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a triple-zeta basis set, about 60% of the virtual MOs can be dropped, while the size of the fitting basis can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of the solution of the CC2 equations, which are in our approach about as expensive as the evaluation of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate that the new approach enables the efficient computation of CC2 excitation energies for excited states of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis sets.

AB - A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has been developed for the evaluation of excitation energies. The method is based on the simultaneous truncation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation. For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for each excited state using the average of the second-order Møller-Plesset (MP2) and the corresponding configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a triple-zeta basis set, about 60% of the virtual MOs can be dropped, while the size of the fitting basis can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of the solution of the CC2 equations, which are in our approach about as expensive as the evaluation of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate that the new approach enables the efficient computation of CC2 excitation energies for excited states of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis sets.

UR - http://www.scopus.com/inward/record.url?scp=85019648849&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85019648849&partnerID=8YFLogxK

U2 - 10.1063/1.4983277

DO - 10.1063/1.4983277

M3 - Article

AN - SCOPUS:85019648849

VL - 146

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 19

M1 - 194102

ER -