Redox regulation of free amino acid levels in Arabidopsis thaliana

Zsolt Gulyás, Livia Simon-Sarkadi, Eszter Badics, Aliz Novák, Zsuzsanna Mednyánszky, Gabriella Szalai, Gábor Galiba, Gábor Kocsy

Research output: Contribution to journalArticle

6 Citations (Scopus)


Abiotic stresses induce oxidative stress, which modifies the level of several metabolites including amino acids. The redox control of free amino acid profile was monitored in wild-type and ascorbate or glutathione deficient mutant Arabidopsis thaliana plants before and after hydroponic treatment with various redox agents. Both mutations and treatments modified the size and redox state of the ascorbate (AsA) and/or glutathione (GSH) pools. The total free amino acid content was increased by AsA, GSH and H2O2 in all three genotypes and a very large (threefold) increase was observed in the GSH-deficient pad2-1 mutant after GSH treatment compared with the untreated wild-type plants. Addition of GSH reduced the ratio of amino acids belonging to the glutamate family on a large scale and increased the relative amount of non-proteinogenic amino acids. The latter change was because of the large increase in the content of alpha-aminoadipate, an inhibitor of glutamatic acid (Glu) transport. Most of the treatments increased the proline (Pro) content, which effect was due to the activation of genes involved in Pro synthesis. Although all studied redox compounds influenced the amount of free amino acids and a mostly positive, very close (r > 0.9) correlation exists between these parameters, a special regulatory role of GSH could be presumed due to its more powerful effect. This may originate from the thiol/disulphide conversion or (de)glutathionylation of enzymes participating in the amino acid metabolism.

Original languageEnglish
Pages (from-to)264-276
Number of pages13
JournalPhysiologia Plantarum
Issue number3
Publication statusPublished - Mar 1 2017

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science
  • Cell Biology

Fingerprint Dive into the research topics of 'Redox regulation of free amino acid levels in Arabidopsis thaliana'. Together they form a unique fingerprint.

  • Cite this