Rectification principles in additive number theory

Y. F. Bilu, V. F. Lev, I. Ruzsa

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

We consider two general principles which allow us to reduce certain additive problems for residue classes modulo a prime to the corresponding problems for integers.

Original languageEnglish
Pages (from-to)343-353
Number of pages11
JournalDiscrete & Computational Geometry
Volume19
Issue number3
Publication statusPublished - 1998

Fingerprint

Additive number Theory
Number theory
Rectification
Modulo
Integer
Class

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computational Theory and Mathematics
  • Discrete Mathematics and Combinatorics
  • Geometry and Topology

Cite this

Rectification principles in additive number theory. / Bilu, Y. F.; Lev, V. F.; Ruzsa, I.

In: Discrete & Computational Geometry, Vol. 19, No. 3, 1998, p. 343-353.

Research output: Contribution to journalArticle

Bilu, Y. F. ; Lev, V. F. ; Ruzsa, I. / Rectification principles in additive number theory. In: Discrete & Computational Geometry. 1998 ; Vol. 19, No. 3. pp. 343-353.
@article{ca79d86e6a5e439f97afa607e9d26aeb,
title = "Rectification principles in additive number theory",
abstract = "We consider two general principles which allow us to reduce certain additive problems for residue classes modulo a prime to the corresponding problems for integers.",
author = "Bilu, {Y. F.} and Lev, {V. F.} and I. Ruzsa",
year = "1998",
language = "English",
volume = "19",
pages = "343--353",
journal = "Discrete and Computational Geometry",
issn = "0179-5376",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - Rectification principles in additive number theory

AU - Bilu, Y. F.

AU - Lev, V. F.

AU - Ruzsa, I.

PY - 1998

Y1 - 1998

N2 - We consider two general principles which allow us to reduce certain additive problems for residue classes modulo a prime to the corresponding problems for integers.

AB - We consider two general principles which allow us to reduce certain additive problems for residue classes modulo a prime to the corresponding problems for integers.

UR - http://www.scopus.com/inward/record.url?scp=0032383336&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032383336&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0032383336

VL - 19

SP - 343

EP - 353

JO - Discrete and Computational Geometry

JF - Discrete and Computational Geometry

SN - 0179-5376

IS - 3

ER -