### Abstract

We consider two general principles which allow us to reduce certain additive problems for residue classes modulo a prime to the corresponding problems for integers.

Original language | English |
---|---|

Pages (from-to) | 343-353 |

Number of pages | 11 |

Journal | Discrete & Computational Geometry |

Volume | 19 |

Issue number | 3 |

Publication status | Published - 1998 |

### Fingerprint

### ASJC Scopus subject areas

- Theoretical Computer Science
- Computational Theory and Mathematics
- Discrete Mathematics and Combinatorics
- Geometry and Topology

### Cite this

*Discrete & Computational Geometry*,

*19*(3), 343-353.

**Rectification principles in additive number theory.** / Bilu, Y. F.; Lev, V. F.; Ruzsa, I.

Research output: Contribution to journal › Article

*Discrete & Computational Geometry*, vol. 19, no. 3, pp. 343-353.

}

TY - JOUR

T1 - Rectification principles in additive number theory

AU - Bilu, Y. F.

AU - Lev, V. F.

AU - Ruzsa, I.

PY - 1998

Y1 - 1998

N2 - We consider two general principles which allow us to reduce certain additive problems for residue classes modulo a prime to the corresponding problems for integers.

AB - We consider two general principles which allow us to reduce certain additive problems for residue classes modulo a prime to the corresponding problems for integers.

UR - http://www.scopus.com/inward/record.url?scp=0032383336&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032383336&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0032383336

VL - 19

SP - 343

EP - 353

JO - Discrete and Computational Geometry

JF - Discrete and Computational Geometry

SN - 0179-5376

IS - 3

ER -