Random parameter variation in analog VLSI neural networks for linear image filtering

B. E. Shi, T. Roska, L. O. Chua

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

This paper introduces an analytic method to determine the sensitivity to random parameter variations of analog VLSI neural network architectures for linear image filtering. The authors compare the robustness of several different circuit architectures for low pass filtering. This method can also determine which components within a particular architecture should specified the most precisely.

Original languageEnglish
Title of host publicationIEEE International Conference on Neural Networks - Conference Proceedings
PublisherIEEE
Pages1917-1922
Number of pages6
Volume3
Publication statusPublished - 1994
EventProceedings of the 1994 IEEE International Conference on Neural Networks. Part 1 (of 7) - Orlando, FL, USA
Duration: Jun 27 1994Jun 29 1994

Other

OtherProceedings of the 1994 IEEE International Conference on Neural Networks. Part 1 (of 7)
CityOrlando, FL, USA
Period6/27/946/29/94

Fingerprint

Network architecture
Neural networks
Networks (circuits)

ASJC Scopus subject areas

  • Software

Cite this

Shi, B. E., Roska, T., & Chua, L. O. (1994). Random parameter variation in analog VLSI neural networks for linear image filtering. In IEEE International Conference on Neural Networks - Conference Proceedings (Vol. 3, pp. 1917-1922). IEEE.

Random parameter variation in analog VLSI neural networks for linear image filtering. / Shi, B. E.; Roska, T.; Chua, L. O.

IEEE International Conference on Neural Networks - Conference Proceedings. Vol. 3 IEEE, 1994. p. 1917-1922.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Shi, BE, Roska, T & Chua, LO 1994, Random parameter variation in analog VLSI neural networks for linear image filtering. in IEEE International Conference on Neural Networks - Conference Proceedings. vol. 3, IEEE, pp. 1917-1922, Proceedings of the 1994 IEEE International Conference on Neural Networks. Part 1 (of 7), Orlando, FL, USA, 6/27/94.
Shi BE, Roska T, Chua LO. Random parameter variation in analog VLSI neural networks for linear image filtering. In IEEE International Conference on Neural Networks - Conference Proceedings. Vol. 3. IEEE. 1994. p. 1917-1922
Shi, B. E. ; Roska, T. ; Chua, L. O. / Random parameter variation in analog VLSI neural networks for linear image filtering. IEEE International Conference on Neural Networks - Conference Proceedings. Vol. 3 IEEE, 1994. pp. 1917-1922
@inproceedings{fe0d9709a43f435fb171ab55db6ea5f1,
title = "Random parameter variation in analog VLSI neural networks for linear image filtering",
abstract = "This paper introduces an analytic method to determine the sensitivity to random parameter variations of analog VLSI neural network architectures for linear image filtering. The authors compare the robustness of several different circuit architectures for low pass filtering. This method can also determine which components within a particular architecture should specified the most precisely.",
author = "Shi, {B. E.} and T. Roska and Chua, {L. O.}",
year = "1994",
language = "English",
volume = "3",
pages = "1917--1922",
booktitle = "IEEE International Conference on Neural Networks - Conference Proceedings",
publisher = "IEEE",

}

TY - GEN

T1 - Random parameter variation in analog VLSI neural networks for linear image filtering

AU - Shi, B. E.

AU - Roska, T.

AU - Chua, L. O.

PY - 1994

Y1 - 1994

N2 - This paper introduces an analytic method to determine the sensitivity to random parameter variations of analog VLSI neural network architectures for linear image filtering. The authors compare the robustness of several different circuit architectures for low pass filtering. This method can also determine which components within a particular architecture should specified the most precisely.

AB - This paper introduces an analytic method to determine the sensitivity to random parameter variations of analog VLSI neural network architectures for linear image filtering. The authors compare the robustness of several different circuit architectures for low pass filtering. This method can also determine which components within a particular architecture should specified the most precisely.

UR - http://www.scopus.com/inward/record.url?scp=0028744429&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028744429&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:0028744429

VL - 3

SP - 1917

EP - 1922

BT - IEEE International Conference on Neural Networks - Conference Proceedings

PB - IEEE

ER -