Quantifying dislocation density in Al-Cu coatings produced by cold spray deposition

Tian Liu, Mark D. Vaudin, Jeffrey R. Bunn, Tamás Ungár, Luke N. Brewer

Research output: Contribution to journalArticle


This paper quantifies the plastic deformation in terms of dislocation density for a series of cold sprayed Al-Cu coatings with copper contents from 2 mass% to 5 mass%. The success of the deposition and consolidation of the feedstock powders during the cold spray process rely on the occurrence of significant plastic deformation. Inert gas atomized Al-Cu alloy powders were sprayed onto substrates made of an Al-Cu-Mg-Mn alloy (AA2024) to produce dense coatings using a low pressure cold spray system with helium as the carrier gas. X-ray diffraction patterns were obtained from the Al-Cu feedstock powder material and the cold sprayed coatings using a monochromatic X-ray source, and the dislocation density was determined via an X-ray whole profile analysis. Increasing the Cu alloy content (from 2 mass% to 5 mass%) systematically increased the dislocation density in the Al-Cu coatings from (4.3 ± 0.5) × 1014 m−2 to (7.5 ± 0.8) × 1014 m−2. The dislocation densities in the feedstock powders ranging from (0.4 ± 0.1) × 1014 m−2 to (1.8 ± 0.2) × 1014 m−2 were all lower than the dislocation densities in the corresponding coatings. The increasing deformation level in the Al-Cu coatings with Cu additions were confirmed by the classic and modified Williamson-Hall analyses of X-ray diffraction data, and peak breadth measurements from neutron diffraction data. A high density of dislocations was also observed in these coatings via electron backscatter diffraction and transmission electron microscopy.

Original languageEnglish
Pages (from-to)115-124
Number of pages10
JournalActa Materialia
Publication statusPublished - Jul 2020


  • Al-Cu alloy
  • W-H analysis
  • an X-ray whole profile analysis CMWP
  • cold spray
  • dislocation density

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Quantifying dislocation density in Al-Cu coatings produced by cold spray deposition'. Together they form a unique fingerprint.

  • Cite this