Proof of a conjecture of Metsch

T. Szőnyi, Zsuzsa Weiner

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

In this paper we prove a conjecture of Metsch about the maximum number of lines intersecting a pointset in PG(2,q), presented at the conference "Combinatorics 2002". As a consequence, we give a short proof of the famous Jamison, Brouwer and Schrijver bound on the size of the smallest affine blocking set in AG(2,q).

Original languageEnglish
Pages (from-to)2066-2070
Number of pages5
JournalJournal of Combinatorial Theory, Series A
Volume118
Issue number7
DOIs
Publication statusPublished - Oct 2011

Fingerprint

Blocking Set
Combinatorics
Point Sets
Line

Keywords

  • Blocking sets
  • Finite geometry
  • Galois planes

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science
  • Computational Theory and Mathematics

Cite this

Proof of a conjecture of Metsch. / Szőnyi, T.; Weiner, Zsuzsa.

In: Journal of Combinatorial Theory, Series A, Vol. 118, No. 7, 10.2011, p. 2066-2070.

Research output: Contribution to journalArticle

Szőnyi, T. ; Weiner, Zsuzsa. / Proof of a conjecture of Metsch. In: Journal of Combinatorial Theory, Series A. 2011 ; Vol. 118, No. 7. pp. 2066-2070.
@article{5e408d9c368346f3876d20e5e596ee5a,
title = "Proof of a conjecture of Metsch",
abstract = "In this paper we prove a conjecture of Metsch about the maximum number of lines intersecting a pointset in PG(2,q), presented at the conference {"}Combinatorics 2002{"}. As a consequence, we give a short proof of the famous Jamison, Brouwer and Schrijver bound on the size of the smallest affine blocking set in AG(2,q).",
keywords = "Blocking sets, Finite geometry, Galois planes",
author = "T. Szőnyi and Zsuzsa Weiner",
year = "2011",
month = "10",
doi = "10.1016/j.jcta.2011.04.012",
language = "English",
volume = "118",
pages = "2066--2070",
journal = "Journal of Combinatorial Theory - Series A",
issn = "0097-3165",
publisher = "Academic Press Inc.",
number = "7",

}

TY - JOUR

T1 - Proof of a conjecture of Metsch

AU - Szőnyi, T.

AU - Weiner, Zsuzsa

PY - 2011/10

Y1 - 2011/10

N2 - In this paper we prove a conjecture of Metsch about the maximum number of lines intersecting a pointset in PG(2,q), presented at the conference "Combinatorics 2002". As a consequence, we give a short proof of the famous Jamison, Brouwer and Schrijver bound on the size of the smallest affine blocking set in AG(2,q).

AB - In this paper we prove a conjecture of Metsch about the maximum number of lines intersecting a pointset in PG(2,q), presented at the conference "Combinatorics 2002". As a consequence, we give a short proof of the famous Jamison, Brouwer and Schrijver bound on the size of the smallest affine blocking set in AG(2,q).

KW - Blocking sets

KW - Finite geometry

KW - Galois planes

UR - http://www.scopus.com/inward/record.url?scp=79955552037&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79955552037&partnerID=8YFLogxK

U2 - 10.1016/j.jcta.2011.04.012

DO - 10.1016/j.jcta.2011.04.012

M3 - Article

VL - 118

SP - 2066

EP - 2070

JO - Journal of Combinatorial Theory - Series A

JF - Journal of Combinatorial Theory - Series A

SN - 0097-3165

IS - 7

ER -