Probing the molecular program of apoptosis by cancer chemopreventive agents.

Research output: Contribution to journalArticle

73 Citations (Scopus)

Abstract

This paper provides a rational molecular basis for studies intended to clarify the interactions between cancer chemopreventive agents and apoptosis, one of the natural forms of cell death that overlaps molecular mechanisms with other forms such as programmed cell death and specialized forms of physiological cell death. Molecular details of the process show the existence of distinct molecular pathways leading to the activation of critical effector elements (apoptosis gene products) functioning under the control of a network of negative regulatory elements. Dysregulation of either apoptosis or anti-apoptosis genes has a significant role in multistage carcinogenesis. Inhibition of apoptosis is one of the underlying mechanisms of the action of tumor promoters. The network of apoptosis and anti-apoptosis gene products provides multiple targets for compounds with cancer chemopreventive potential. Many data in the literature show initiating, potentiating or inhibitory effects of such compounds on apoptosis. However, the molecular mechanism of these effects is largely unknown. We initiated a series of studies using mouse thymocytes which undergo apoptosis through distinct molecular mechanisms after T-cell receptor activation (TCR pathway), following the addition of glucocorticoids (DEX pathway) or DNA damaging agents (p53 pathway). All trans-and 9-cis-retinoic acid induced apoptosis, elicited through the DEX pathway, inhibited the TCR pathway, and did not affect p53- initiated apoptosis. N-acetylcysteine can inhibit all forms. Sodium salicylate enhanced spontaneous cell death, decreased p53-dependent apoptosis, and did not affect the DEX and TCR pathways. These preliminary results, which show differential effects of the studied compounds on distinct molecular pathways of apoptosis, warrant further investigations in the effort to utilize the molecular elements of apoptosis in proper cancer chemoprevention, and find biochemical targets for apoptosis-related surrogate endpoint biomarker assays of chemoprevention.

Original languageEnglish
Pages (from-to)151-161
Number of pages11
JournalJournal of cellular biochemistry. Supplement
Volume22
Publication statusPublished - 1995

Fingerprint

Apoptosis
Neoplasms
Cell death
Cell Death
Genes
Chemoprevention
Biomarkers
Chemical activation
Endpoint Determination
Sodium Salicylate
Acetylcysteine
Thymocytes
T-Cell Antigen Receptor
Carcinogens
Glucocorticoids
Assays
Carcinogenesis
DNA

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology

Cite this

Probing the molecular program of apoptosis by cancer chemopreventive agents. / Fésüs, L.; Szondy, Z.; Uray, I.

In: Journal of cellular biochemistry. Supplement, Vol. 22, 1995, p. 151-161.

Research output: Contribution to journalArticle

@article{0ea7aa65aee54ac389f3eb0b7e8a2d69,
title = "Probing the molecular program of apoptosis by cancer chemopreventive agents.",
abstract = "This paper provides a rational molecular basis for studies intended to clarify the interactions between cancer chemopreventive agents and apoptosis, one of the natural forms of cell death that overlaps molecular mechanisms with other forms such as programmed cell death and specialized forms of physiological cell death. Molecular details of the process show the existence of distinct molecular pathways leading to the activation of critical effector elements (apoptosis gene products) functioning under the control of a network of negative regulatory elements. Dysregulation of either apoptosis or anti-apoptosis genes has a significant role in multistage carcinogenesis. Inhibition of apoptosis is one of the underlying mechanisms of the action of tumor promoters. The network of apoptosis and anti-apoptosis gene products provides multiple targets for compounds with cancer chemopreventive potential. Many data in the literature show initiating, potentiating or inhibitory effects of such compounds on apoptosis. However, the molecular mechanism of these effects is largely unknown. We initiated a series of studies using mouse thymocytes which undergo apoptosis through distinct molecular mechanisms after T-cell receptor activation (TCR pathway), following the addition of glucocorticoids (DEX pathway) or DNA damaging agents (p53 pathway). All trans-and 9-cis-retinoic acid induced apoptosis, elicited through the DEX pathway, inhibited the TCR pathway, and did not affect p53- initiated apoptosis. N-acetylcysteine can inhibit all forms. Sodium salicylate enhanced spontaneous cell death, decreased p53-dependent apoptosis, and did not affect the DEX and TCR pathways. These preliminary results, which show differential effects of the studied compounds on distinct molecular pathways of apoptosis, warrant further investigations in the effort to utilize the molecular elements of apoptosis in proper cancer chemoprevention, and find biochemical targets for apoptosis-related surrogate endpoint biomarker assays of chemoprevention.",
author = "L. F{\'e}s{\"u}s and Z. Szondy and I. Uray",
year = "1995",
language = "English",
volume = "22",
pages = "151--161",
journal = "Journal of cellular biochemistry. Supplement",
issn = "0733-1959",
publisher = "John Wiley and Sons Inc.",

}

TY - JOUR

T1 - Probing the molecular program of apoptosis by cancer chemopreventive agents.

AU - Fésüs, L.

AU - Szondy, Z.

AU - Uray, I.

PY - 1995

Y1 - 1995

N2 - This paper provides a rational molecular basis for studies intended to clarify the interactions between cancer chemopreventive agents and apoptosis, one of the natural forms of cell death that overlaps molecular mechanisms with other forms such as programmed cell death and specialized forms of physiological cell death. Molecular details of the process show the existence of distinct molecular pathways leading to the activation of critical effector elements (apoptosis gene products) functioning under the control of a network of negative regulatory elements. Dysregulation of either apoptosis or anti-apoptosis genes has a significant role in multistage carcinogenesis. Inhibition of apoptosis is one of the underlying mechanisms of the action of tumor promoters. The network of apoptosis and anti-apoptosis gene products provides multiple targets for compounds with cancer chemopreventive potential. Many data in the literature show initiating, potentiating or inhibitory effects of such compounds on apoptosis. However, the molecular mechanism of these effects is largely unknown. We initiated a series of studies using mouse thymocytes which undergo apoptosis through distinct molecular mechanisms after T-cell receptor activation (TCR pathway), following the addition of glucocorticoids (DEX pathway) or DNA damaging agents (p53 pathway). All trans-and 9-cis-retinoic acid induced apoptosis, elicited through the DEX pathway, inhibited the TCR pathway, and did not affect p53- initiated apoptosis. N-acetylcysteine can inhibit all forms. Sodium salicylate enhanced spontaneous cell death, decreased p53-dependent apoptosis, and did not affect the DEX and TCR pathways. These preliminary results, which show differential effects of the studied compounds on distinct molecular pathways of apoptosis, warrant further investigations in the effort to utilize the molecular elements of apoptosis in proper cancer chemoprevention, and find biochemical targets for apoptosis-related surrogate endpoint biomarker assays of chemoprevention.

AB - This paper provides a rational molecular basis for studies intended to clarify the interactions between cancer chemopreventive agents and apoptosis, one of the natural forms of cell death that overlaps molecular mechanisms with other forms such as programmed cell death and specialized forms of physiological cell death. Molecular details of the process show the existence of distinct molecular pathways leading to the activation of critical effector elements (apoptosis gene products) functioning under the control of a network of negative regulatory elements. Dysregulation of either apoptosis or anti-apoptosis genes has a significant role in multistage carcinogenesis. Inhibition of apoptosis is one of the underlying mechanisms of the action of tumor promoters. The network of apoptosis and anti-apoptosis gene products provides multiple targets for compounds with cancer chemopreventive potential. Many data in the literature show initiating, potentiating or inhibitory effects of such compounds on apoptosis. However, the molecular mechanism of these effects is largely unknown. We initiated a series of studies using mouse thymocytes which undergo apoptosis through distinct molecular mechanisms after T-cell receptor activation (TCR pathway), following the addition of glucocorticoids (DEX pathway) or DNA damaging agents (p53 pathway). All trans-and 9-cis-retinoic acid induced apoptosis, elicited through the DEX pathway, inhibited the TCR pathway, and did not affect p53- initiated apoptosis. N-acetylcysteine can inhibit all forms. Sodium salicylate enhanced spontaneous cell death, decreased p53-dependent apoptosis, and did not affect the DEX and TCR pathways. These preliminary results, which show differential effects of the studied compounds on distinct molecular pathways of apoptosis, warrant further investigations in the effort to utilize the molecular elements of apoptosis in proper cancer chemoprevention, and find biochemical targets for apoptosis-related surrogate endpoint biomarker assays of chemoprevention.

UR - http://www.scopus.com/inward/record.url?scp=0029101403&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029101403&partnerID=8YFLogxK

M3 - Article

C2 - 8538193

AN - SCOPUS:0029101403

VL - 22

SP - 151

EP - 161

JO - Journal of cellular biochemistry. Supplement

JF - Journal of cellular biochemistry. Supplement

SN - 0733-1959

ER -