Probing the dynamic properties of two sites simultaneously in a protein-protein interaction process: A SDSL-EPR study

N. Le Breton, S. Longhi, A. Rockenbauer, B. Guigliarelli, S. R.A. Marque, V. Belle, M. Martinho

Research output: Contribution to journalArticle


During molecular processes, protein flexibility is a fundamental property allowing protein-protein interaction. Following structural changes during these interactions is then of crucial interest. Site-Directed Spin Labeling (SDSL) combined to EPR spectroscopy is a powerful technique to follow structural modifications within proteins and during protein-protein interactions. Usual nitroxide labels target cysteine residues and afford a 3-line spectrum, whose shape is informative of the structural environment of the label. However, it is not possible to probe two regions of a protein or two partner proteins at the same time because of the overlapping of EPR signatures. Previously, we reported the design and the characterization of a spin label based on a β-phosphorylated (PP) nitroxide yielding a 6-line spectrum. Here, we report the use of two labels with different EPR signatures, namely maleimido-proxyl (P) and PP, to follow structural changes during a protein-protein interaction process in one single experiment. As a model system, we chose a disordered protein that undergoes an induced α-helical folding upon binding to its partner. We show that the EPR spectrum of a mixture of labeled interacting proteins can be analyzed in terms of structural changes during the interaction. This study represents an important step forward in the extension of the panoply of SDSL-EPR approaches.

Original languageEnglish
Pages (from-to)22584-22588
Number of pages5
JournalPhysical Chemistry Chemical Physics
Issue number40
Publication statusPublished - Jan 1 2019


ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this