Presolar silicon carbide from the Indarch (EH4) meteorite: Comparison with silicon carbide populations from other meteorite classes

Sara S. Russell, Ulrich Ott, Conel M.O.D. Alexander, Ernst K. Zinner, John W. Arden, C. T. Pillinger

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Presolar SiC from the Indarch (EH4) meteorite was studied by scanning electron microscopy (SEM), by ion probe analysis for C and Si isotopic compositions, and by static-source mass spectrometry for noble gas and C isotopic compositions. The data obtained are compared to SiC data from other meteorites, especially from Murchison (CM2), for which there is the most information available. The isotopic compositions of the major elements in SiC from Indarch and Murchison are similar. Stepped combustion data suggest a mean δ13C for SiC from both meteorites of ∼+1430‰. Silicon isotopes in Indarch and Murchison SiC also compare well. In some other important respects, however, SiC in the two meteorites are different. Morphologically, SiC from Indarch appears finer grained than SiC from Murchison and is entirely composed of submicron grains. The finer-grained nature of Indarch SiC is confirmed by its noble gas characteristics. The mean Ne-E/ Xe-S ratio for bulk Indarch SiC is significantly lower than the same ratio in Murchison (625 ± 47 vs. ∼3500) but is similar to that of the finest grain-size fractions (<1 μm) in Murchison. A comparison of noble gas data from SiC from several different meteorites suggests that it might be Murchison SiC, rather than Indarch SiC, that is unusual. The grain-size disparities in SiC between meteorites are difficult to explain by residue processing differences or differing parent body processing. Instead, we speculate that a grain-size sorting mechanism for SiC may have operated in the solar nebula.

Original languageEnglish
Pages (from-to)719-732
Number of pages14
JournalMeteoritics and Planetary Science
Volume32
Issue number5
DOIs
Publication statusPublished - Sep 1997

ASJC Scopus subject areas

  • Geophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Presolar silicon carbide from the Indarch (EH4) meteorite: Comparison with silicon carbide populations from other meteorite classes'. Together they form a unique fingerprint.

  • Cite this