Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces

D. Biro, P. Barna, L. Székely, O. Geszti, T. Hattori, A. Devenyi

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS2 targets were used in the sputter sources. The depositions were performed in an Ar-N2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on 〈1 0 0〉 Si wafers covered by thermally grown SiO2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS2 multilayer system followed this waviness. Crystallinity of the TiAlN and CrN layers in the multilayer system decreases with increasing thickness of the MoS2 layer.

Original languageEnglish
Pages (from-to)99-106
Number of pages8
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume590
Issue number1-3
DOIs
Publication statusPublished - Jun 1 2008

Fingerprint

Multilayers
Thin films
preparation
thin films
Chemical analysis
transition layers
Multilayer films
Transmission electron microscopy
transmission electron microscopy
poisoning
Domes
Substrates
domes
Fuzzy logic
logic
Sputtering
chromium
Chromium
crystallinity
adhesion

Keywords

  • CrN/TiAlN/MoS multilayers
  • Nano-scaled coatings
  • Nano-structure
  • Solid lubricant MoS
  • XTEM

ASJC Scopus subject areas

  • Instrumentation
  • Nuclear and High Energy Physics

Cite this

@article{65a8e5398ed241f5a63a2b6571e98541,
title = "Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces",
abstract = "The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at{\%}, pure chromium and MoS2 targets were used in the sputter sources. The depositions were performed in an Ar-N2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on 〈1 0 0〉 Si wafers covered by thermally grown SiO2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS2 multilayer system followed this waviness. Crystallinity of the TiAlN and CrN layers in the multilayer system decreases with increasing thickness of the MoS2 layer.",
keywords = "CrN/TiAlN/MoS multilayers, Nano-scaled coatings, Nano-structure, Solid lubricant MoS, XTEM",
author = "D. Biro and P. Barna and L. Sz{\'e}kely and O. Geszti and T. Hattori and A. Devenyi",
year = "2008",
month = "6",
day = "1",
doi = "10.1016/j.nima.2008.02.043",
language = "English",
volume = "590",
pages = "99--106",
journal = "Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
issn = "0168-9002",
publisher = "Elsevier",
number = "1-3",

}

TY - JOUR

T1 - Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces

AU - Biro, D.

AU - Barna, P.

AU - Székely, L.

AU - Geszti, O.

AU - Hattori, T.

AU - Devenyi, A.

PY - 2008/6/1

Y1 - 2008/6/1

N2 - The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS2 targets were used in the sputter sources. The depositions were performed in an Ar-N2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on 〈1 0 0〉 Si wafers covered by thermally grown SiO2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS2 multilayer system followed this waviness. Crystallinity of the TiAlN and CrN layers in the multilayer system decreases with increasing thickness of the MoS2 layer.

AB - The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS2 targets were used in the sputter sources. The depositions were performed in an Ar-N2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on 〈1 0 0〉 Si wafers covered by thermally grown SiO2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS2 multilayer system followed this waviness. Crystallinity of the TiAlN and CrN layers in the multilayer system decreases with increasing thickness of the MoS2 layer.

KW - CrN/TiAlN/MoS multilayers

KW - Nano-scaled coatings

KW - Nano-structure

KW - Solid lubricant MoS

KW - XTEM

UR - http://www.scopus.com/inward/record.url?scp=44249118051&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=44249118051&partnerID=8YFLogxK

U2 - 10.1016/j.nima.2008.02.043

DO - 10.1016/j.nima.2008.02.043

M3 - Article

AN - SCOPUS:44249118051

VL - 590

SP - 99

EP - 106

JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

SN - 0168-9002

IS - 1-3

ER -