Polyethylene/synthetic boehmite alumina nanocomposites: Structure, mechanical, and perforation impact properties

V. M. Khumalo, J. Karger-Kocsis, R. Thomann

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Synthetic boehmite alumina (BA) has been incorporated up to 8 wt% in high-density polyethylene (HDPE) and low-density polyethylene (LDPE) by melt compounding. The primary nominal particle sizes of the two BA grades used were 40 and 74 nm, respectively. The dispersion of the BA in PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM). Specimens of the PE/BA nanocomposites were subjected to dynamic-mechanical thermal analysis (DMTA), static tensile and instrumented falling weight impact (IFWI) tests. It was established that BA was nanoscale dispersed in both HDPE and LDPE. According to DMTA, BA worked as reinforcing filler. This was confirmed in static mechanical tests, too. BA grades and contents influenced the static tensile and dynamic IFWI behaviors of the PE/BA nanocomposites differently. Surprisingly, BA incorporation enhanced the ductility (elongations at yield and break) of HDPE in contrast to LDPE. Unlike HDPE/BA nanocomposites, the perforation impact resistance of the LDPE/BA systems was reduced with increasing BA content at both ambient temperature and T = -30 °C. The lesser the reduction the higher the primary particle size of the BA was.

Original languageEnglish
Pages (from-to)422-428
Number of pages7
JournalJournal of Materials Science
Volume46
Issue number2
DOIs
Publication statusPublished - Jan 1 2011

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Polyethylene/synthetic boehmite alumina nanocomposites: Structure, mechanical, and perforation impact properties'. Together they form a unique fingerprint.

  • Cite this