Physical characterization of iron oxide nanoparticles in magnetoferritin

L. Melnikova, Z. Mitroova, M. Timko, Kovač J. Kovač, M. Koralewski, M. Pochylski, M. V. Avdeev, V. I. Petrenko, V. M. Garamus, L. Almásy, P. Kopčanský

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Natural ferritin is the iron-storage protein of animals, plants, and bacteria. It is a spherical biomacromolecule of external diameter about 12 nm composed of 24 protein subunits arranged as a hollow sphere of approximately 8 nm in diameter. Inside the sphere, iron is stored in the ferric oxidation state as a complex molecule with a crystallographic structure similar to mineral ferrihydrite. By a proper chemical process, it is possible to use the empty protein shell of ferritin, i.e. apoferritin, as a confined environment, in which magnetic iron oxide nanoparticles can be synthesized forming a biocompatible ferrofluid called magnetoferritin [1]. The latest studies show that brain ferritin [2] in patients with the Alzheimer's disease [3] has a polyphase structure, incorporating also magnetite. The structure, quality and quantity of the iron core composition in the brain ferritin have not been fully determined yet, and it has not been established whether they are related to the origin of neurodegenerative diseases or to their consequences [4, 5]. For these reasons, by combining different techniques it is necessary to fully characterize the structure and the physico-chemical properties of ferritin and distinguish between magnetic structures, especially for understanding the role of magnetite presence in the development of neurodegenerative diseases. Of particular interest is the search for methods allowing detection of magnetite inside ferritin proteins in vivo and inside magnetoferritin as a model system in vitro, respectively. Magnetoferritin is a relatively new biocompatible nanomaterial with continuously increasing popularity in many fields of science from medicine through nanotechnology up to physics. If compared with physiological ferritin, magnetoferritin contains magnetic nanoparticles (Fe3O4, γ-Fe2O3) surrounded by the empty protein shell (apoferritin). The problem of toxicity and side effects of magnetic nanoparticles in organs and tissues is minimized due to the protein nature of this unique material, which is important for many possible applications in clinical practice as a drug carrier, contrast medium in radiodiagnostics, or in magnetic hyperthermia therapy. In addition to biocompatibility, another advantage of magnetoferritin for biotechnological applications is a relatively short time of controlled synthesis adapted to the formation of magnetite specifically inside the protein cavity and creation the magnetoferritin molecule.

Original languageEnglish
Pages (from-to)293-296
Number of pages4
JournalMagnetohydrodynamics
Volume49
Issue number3-4
Publication statusPublished - 2013

Fingerprint

Iron oxides
iron oxides
Nanoparticles
proteins
Proteins
nanoparticles
Magnetite
magnetite
Neurodegenerative diseases
Iron
iron
brain
Brain
Hyperthermia therapy
Contrast media
Molecules
Magnetic fluids
hyperthermia
ferrofluids
Magnetic structure

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Physics and Astronomy(all)

Cite this

Melnikova, L., Mitroova, Z., Timko, M., J. Kovač, K., Koralewski, M., Pochylski, M., ... Kopčanský, P. (2013). Physical characterization of iron oxide nanoparticles in magnetoferritin. Magnetohydrodynamics, 49(3-4), 293-296.

Physical characterization of iron oxide nanoparticles in magnetoferritin. / Melnikova, L.; Mitroova, Z.; Timko, M.; J. Kovač, Kovač; Koralewski, M.; Pochylski, M.; Avdeev, M. V.; Petrenko, V. I.; Garamus, V. M.; Almásy, L.; Kopčanský, P.

In: Magnetohydrodynamics, Vol. 49, No. 3-4, 2013, p. 293-296.

Research output: Contribution to journalArticle

Melnikova, L, Mitroova, Z, Timko, M, J. Kovač, K, Koralewski, M, Pochylski, M, Avdeev, MV, Petrenko, VI, Garamus, VM, Almásy, L & Kopčanský, P 2013, 'Physical characterization of iron oxide nanoparticles in magnetoferritin', Magnetohydrodynamics, vol. 49, no. 3-4, pp. 293-296.
Melnikova L, Mitroova Z, Timko M, J. Kovač K, Koralewski M, Pochylski M et al. Physical characterization of iron oxide nanoparticles in magnetoferritin. Magnetohydrodynamics. 2013;49(3-4):293-296.
Melnikova, L. ; Mitroova, Z. ; Timko, M. ; J. Kovač, Kovač ; Koralewski, M. ; Pochylski, M. ; Avdeev, M. V. ; Petrenko, V. I. ; Garamus, V. M. ; Almásy, L. ; Kopčanský, P. / Physical characterization of iron oxide nanoparticles in magnetoferritin. In: Magnetohydrodynamics. 2013 ; Vol. 49, No. 3-4. pp. 293-296.
@article{0b70d418b23d474c981fe4d40e670548,
title = "Physical characterization of iron oxide nanoparticles in magnetoferritin",
abstract = "Natural ferritin is the iron-storage protein of animals, plants, and bacteria. It is a spherical biomacromolecule of external diameter about 12 nm composed of 24 protein subunits arranged as a hollow sphere of approximately 8 nm in diameter. Inside the sphere, iron is stored in the ferric oxidation state as a complex molecule with a crystallographic structure similar to mineral ferrihydrite. By a proper chemical process, it is possible to use the empty protein shell of ferritin, i.e. apoferritin, as a confined environment, in which magnetic iron oxide nanoparticles can be synthesized forming a biocompatible ferrofluid called magnetoferritin [1]. The latest studies show that brain ferritin [2] in patients with the Alzheimer's disease [3] has a polyphase structure, incorporating also magnetite. The structure, quality and quantity of the iron core composition in the brain ferritin have not been fully determined yet, and it has not been established whether they are related to the origin of neurodegenerative diseases or to their consequences [4, 5]. For these reasons, by combining different techniques it is necessary to fully characterize the structure and the physico-chemical properties of ferritin and distinguish between magnetic structures, especially for understanding the role of magnetite presence in the development of neurodegenerative diseases. Of particular interest is the search for methods allowing detection of magnetite inside ferritin proteins in vivo and inside magnetoferritin as a model system in vitro, respectively. Magnetoferritin is a relatively new biocompatible nanomaterial with continuously increasing popularity in many fields of science from medicine through nanotechnology up to physics. If compared with physiological ferritin, magnetoferritin contains magnetic nanoparticles (Fe3O4, γ-Fe2O3) surrounded by the empty protein shell (apoferritin). The problem of toxicity and side effects of magnetic nanoparticles in organs and tissues is minimized due to the protein nature of this unique material, which is important for many possible applications in clinical practice as a drug carrier, contrast medium in radiodiagnostics, or in magnetic hyperthermia therapy. In addition to biocompatibility, another advantage of magnetoferritin for biotechnological applications is a relatively short time of controlled synthesis adapted to the formation of magnetite specifically inside the protein cavity and creation the magnetoferritin molecule.",
author = "L. Melnikova and Z. Mitroova and M. Timko and {J. Kovač}, Kovač and M. Koralewski and M. Pochylski and Avdeev, {M. V.} and Petrenko, {V. I.} and Garamus, {V. M.} and L. Alm{\'a}sy and P. Kopčansk{\'y}",
year = "2013",
language = "English",
volume = "49",
pages = "293--296",
journal = "Magnetohydrodynamics",
issn = "0024-998X",
publisher = "Institute of Physics, University of Latvia",
number = "3-4",

}

TY - JOUR

T1 - Physical characterization of iron oxide nanoparticles in magnetoferritin

AU - Melnikova, L.

AU - Mitroova, Z.

AU - Timko, M.

AU - J. Kovač, Kovač

AU - Koralewski, M.

AU - Pochylski, M.

AU - Avdeev, M. V.

AU - Petrenko, V. I.

AU - Garamus, V. M.

AU - Almásy, L.

AU - Kopčanský, P.

PY - 2013

Y1 - 2013

N2 - Natural ferritin is the iron-storage protein of animals, plants, and bacteria. It is a spherical biomacromolecule of external diameter about 12 nm composed of 24 protein subunits arranged as a hollow sphere of approximately 8 nm in diameter. Inside the sphere, iron is stored in the ferric oxidation state as a complex molecule with a crystallographic structure similar to mineral ferrihydrite. By a proper chemical process, it is possible to use the empty protein shell of ferritin, i.e. apoferritin, as a confined environment, in which magnetic iron oxide nanoparticles can be synthesized forming a biocompatible ferrofluid called magnetoferritin [1]. The latest studies show that brain ferritin [2] in patients with the Alzheimer's disease [3] has a polyphase structure, incorporating also magnetite. The structure, quality and quantity of the iron core composition in the brain ferritin have not been fully determined yet, and it has not been established whether they are related to the origin of neurodegenerative diseases or to their consequences [4, 5]. For these reasons, by combining different techniques it is necessary to fully characterize the structure and the physico-chemical properties of ferritin and distinguish between magnetic structures, especially for understanding the role of magnetite presence in the development of neurodegenerative diseases. Of particular interest is the search for methods allowing detection of magnetite inside ferritin proteins in vivo and inside magnetoferritin as a model system in vitro, respectively. Magnetoferritin is a relatively new biocompatible nanomaterial with continuously increasing popularity in many fields of science from medicine through nanotechnology up to physics. If compared with physiological ferritin, magnetoferritin contains magnetic nanoparticles (Fe3O4, γ-Fe2O3) surrounded by the empty protein shell (apoferritin). The problem of toxicity and side effects of magnetic nanoparticles in organs and tissues is minimized due to the protein nature of this unique material, which is important for many possible applications in clinical practice as a drug carrier, contrast medium in radiodiagnostics, or in magnetic hyperthermia therapy. In addition to biocompatibility, another advantage of magnetoferritin for biotechnological applications is a relatively short time of controlled synthesis adapted to the formation of magnetite specifically inside the protein cavity and creation the magnetoferritin molecule.

AB - Natural ferritin is the iron-storage protein of animals, plants, and bacteria. It is a spherical biomacromolecule of external diameter about 12 nm composed of 24 protein subunits arranged as a hollow sphere of approximately 8 nm in diameter. Inside the sphere, iron is stored in the ferric oxidation state as a complex molecule with a crystallographic structure similar to mineral ferrihydrite. By a proper chemical process, it is possible to use the empty protein shell of ferritin, i.e. apoferritin, as a confined environment, in which magnetic iron oxide nanoparticles can be synthesized forming a biocompatible ferrofluid called magnetoferritin [1]. The latest studies show that brain ferritin [2] in patients with the Alzheimer's disease [3] has a polyphase structure, incorporating also magnetite. The structure, quality and quantity of the iron core composition in the brain ferritin have not been fully determined yet, and it has not been established whether they are related to the origin of neurodegenerative diseases or to their consequences [4, 5]. For these reasons, by combining different techniques it is necessary to fully characterize the structure and the physico-chemical properties of ferritin and distinguish between magnetic structures, especially for understanding the role of magnetite presence in the development of neurodegenerative diseases. Of particular interest is the search for methods allowing detection of magnetite inside ferritin proteins in vivo and inside magnetoferritin as a model system in vitro, respectively. Magnetoferritin is a relatively new biocompatible nanomaterial with continuously increasing popularity in many fields of science from medicine through nanotechnology up to physics. If compared with physiological ferritin, magnetoferritin contains magnetic nanoparticles (Fe3O4, γ-Fe2O3) surrounded by the empty protein shell (apoferritin). The problem of toxicity and side effects of magnetic nanoparticles in organs and tissues is minimized due to the protein nature of this unique material, which is important for many possible applications in clinical practice as a drug carrier, contrast medium in radiodiagnostics, or in magnetic hyperthermia therapy. In addition to biocompatibility, another advantage of magnetoferritin for biotechnological applications is a relatively short time of controlled synthesis adapted to the formation of magnetite specifically inside the protein cavity and creation the magnetoferritin molecule.

UR - http://www.scopus.com/inward/record.url?scp=84890378823&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84890378823&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84890378823

VL - 49

SP - 293

EP - 296

JO - Magnetohydrodynamics

JF - Magnetohydrodynamics

SN - 0024-998X

IS - 3-4

ER -