PET Identifies Transitional Metabolic Change in the Spinal Coral Following a Subthreshold Dose of Irradiation

Olga Ésik, Miklós Emri, Szabolcs Szakáll, Hans Herzog, Géza Sáfrány, Erzsébet Lengyel, András Boér, Gabriella Liszkay, Lajos Trón, Zsolt Lengyel, Imre Repa

Research output: Contribution to journalArticle

20 Citations (Scopus)


Positron emission tomographic (PET) investigations were performed to obtain in vivo information on symptomless radiation-induced pathological changes in the human spinal cord. PET investigations were carried out prior to radiotherapy and during the regular follow-up in an early hypopharyngeal cancer patient (the spinal cord was irradiated with a biologically effective dose of 80 Gy2), with [18F]fluorodeoxyglucose (FDG), [ 11C]methionine and [15O]butanol as tracers; radiosensitivity and electroneuronographic (ENG) studies were also performed. A very low background FDG accumulation (mean standardized uptake values, i.e. SUV: 0.84) was observed in the spinal cord before the initiation of radiotherapy. An increased FDG uptake was measured 2 months after the completion of radiotherapy (mean SUV 1.69), followed by a fall-off, as measured 7 months later (mean SUV: 1.21). By 44 months after completion of irradiation, the FDG accumulation in the irradiated segments of the spinal cord had decreased to a level very close to the initial value (mean SUV: 1.11). The simultaneous [ 15O]butanol uptake results demonstrated a set of perfusion changes similar to those observed in connection with the FDG accumulation. The patient exhibited an extremely low [11C]methionine uptake within the irradiated and the nonirradiated spinal cord during the clinical course. She has not had any neurological symptoms, and the results of central ENG measurements before radiotherapy and 2 months following its completion proved normal. Radiobiological investigations did not reveal unequivocal signs of an increased radiosensitivity. A transitory increased spinal cord FDG uptake following radiotherapy may be related to the posttherapeutic mild inflammatory and regenerative processes. The normal [11C]methionine accumulation observed is strong evidence against intensive cell proliferation. The high degree of normalization of the temporarily increased FDG uptake of the irradiated spinal cord segments by 44 months is in good agreement with the results of monkey studies, which demonstrated a nearly complete recovery from radiation-induced spinal cord injury.

Original languageEnglish
Pages (from-to)42-46
Number of pages5
JournalPathology and Oncology Research
Issue number1
Publication statusPublished - Jan 1 2004


  • Positron emission tomography
  • Radiobiology
  • Radiotherapy
  • Spinal cord
  • [ F]fluorodeoxyglucose
  • [ O]butanol
  • [C]methionine

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'PET Identifies Transitional Metabolic Change in the Spinal Coral Following a Subthreshold Dose of Irradiation'. Together they form a unique fingerprint.

  • Cite this