Pattern formation and self-organization in a simple precipitation system

András Volford, Ferenc Izsák, Mátyás Ripszám, István Lagzi

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

Various types of pattern formation and self-organization phenomena can be observed in biological, chemical, and geochemical systems due to the interaction of reaction with diffusion. The appearance of static precipitation patterns was reported first by Liesegang in 1896. Traveling waves and dynamically changing patterns can also exist in reaction-diffusion systems: the Belousov-Zhabotinsky reaction provides a classical example for these phenomena. Until now, no experimental evidence had been found for the presence of such dynamical patterns in precipitation systems. Pattern formation phenomena, as a result of precipitation front coupling with traveling waves, are investigated in a new simple reaction-diffusion system that is based on the precipitation and complex formation of aluminum hydroxide. A unique kind of self-organization, the spontaneous appearance of traveling waves, and spiral formation inside a precipitation front is reported. The newly designed system is a simple one (we need just two inorganic reactants, and the experimental setup is simple), in which dynamically changing pattern formation can be observed. This work could show a new perspective in precipitation pattern formation and geochemical self-organization.

Original languageEnglish
Pages (from-to)961-964
Number of pages4
JournalLangmuir
Volume23
Issue number3
DOIs
Publication statusPublished - Jan 30 2007

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Pattern formation and self-organization in a simple precipitation system'. Together they form a unique fingerprint.

  • Cite this