Partially asymmetric exclusion models with quenched disorder

Róbert Juhász, Ludger Santen, Ferenc Iglói

Research output: Contribution to journalArticle

48 Citations (Scopus)


We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case, the accumulated distance traveled by the particles, x, scales with the time, t, as x ∼ t1/z, with a dynamical exponent z > 0. Using extreme value statistics and an asymptotically exact strong disorder renormalization group method, we exactly calculate zPW for particlewise disorder, which is argued to be related as zSW = ZPW/2 for sitewise disorder. In the symmetric case with zero mean drift, the particle diffusion is ultraslow, logarithmic in time.

Original languageEnglish
Article number010601
JournalPhysical review letters
Issue number1
Publication statusPublished - Jan 14 2005

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Partially asymmetric exclusion models with quenched disorder'. Together they form a unique fingerprint.

  • Cite this