Parameter estimation for inspiraling eccentric compact binaries including pericenter precession

Balázs Mikóczi, Bence Kocsis, Péter Forgács, Mátyás Vasúth

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Inspiraling supermassive black hole binary systems with high orbital eccentricity are important sources for space-based gravitational wave observatories like the Laser Interferometer Space Antenna. Eccentricity adds orbital harmonics to the Fourier transform of the gravitational wave signal, and relativistic pericenter precession leads to a three-way splitting of each harmonic peak. We study the parameter estimation accuracy for such waveforms with different initial eccentricity, using the Fisher matrix method and a MonteCarlo sampling of the initial binary orientation. The eccentricity improves the parameter estimation by breaking degeneracies between different parameters. In particular, we find that the source localization precision improves significantly for higher-mass binaries due to eccentricity. The typical sky position errors are ∼1deg for a nonspinning, 107M , equal-mass binary at redshift z=1, if the initial eccentricity 1yr before merger is e 0∼0.6. Pericenter precession does not affect the source localization accuracy significantly, but it does further improve the mass and eccentricity estimation accuracy systematically by a factor of 3-10 for masses between 106M and 107M for e 0∼0.3.

Original languageEnglish
Article number104027
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume86
Issue number10
DOIs
Publication statusPublished - Nov 9 2012

    Fingerprint

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Cite this