Parameter adaptation in a simplified Pulse-Coupled Neural Network

Geza Szekely, Thomas Lindblad

Research output: Contribution to journalConference article

17 Citations (Scopus)


In a general purpose pulse coupled neural network (PCNN) algorithm the following parameters are used: 2 weight matrices, 3 time constants, 3 normalization factors and 2 further parameters. In a given application, one has to determine the near optimal parameter set to achieve the desired goal. Here a simplified PCNN is described which contains a parameter fitting part, in the least squares sense. Given input and a desired output image, the program is able to determine the optimal value of a selected PCNN parameter. This method can be extended to more general PCNN algorithms, because partial derivatives are not required for the fitting. Only the sum of squares of the differences is used.

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Parameter adaptation in a simplified Pulse-Coupled Neural Network'. Together they form a unique fingerprint.

  • Cite this