Oxidation state of germanium promoter on a palladium/ carbon catalyst and its role in hydrogenation reactions

Z. Bodnar, T. Mallat, I. Bakos, S. Szabo, Z. Zsoldos, Z. Schay

Research output: Contribution to journalArticle

16 Citations (Scopus)


The oxidation state and location of germanium promoter in a carbon-supported palladium catalyst were studied by X-ray photoelectron spectroscopic, X-ray diffraction, electrochemical and atomic emission spectroscopic methods. During promotion with an aqueous GeO2 solution at room temperature, germanium deposited exclusively on palladium particles via the ionization of adsorbed hydrogen. Two types of germanium species were identified. Up to a Ge/Pd8 = 0.6 atomic ratio only strongly bound adatoms with a partial positive charge (Gen+) were formed. At higher promoter/palladium ratios a rapid bulk alloy formation was also observed (weakly bound species, Ge0). The rate of bulk alloy formation was dependent on the particle size of palladium and on the initial Ge/Pd ratio. Measurement of the open circuit potential of the catalyst slurry revealed that the increase in the oxidation state of germanium during hydrogenation reactions was negligible. Germanium deposition onto palladium suppressed the hydrogen adsorption and absorption. Accordingly, the activity of the bimetallic catalysts decreased with increasing promoter/palladium ratio in the liquid phase hydrogenation of organic substrates having various reducible functional groups. An anomalous increase in activity and a substantial change in selectivity was observed in the hydrogenation of CC double bonds conjugated with hydroxyl, carbonyl or phenyl groups, while this phenomenon was absent in the reduction of substrates having a CC double bond in conjugation with carboxyl, nitrile or ester functional groups. The role of Gen+ acidic centers could be excluded and an ensemble effect of Ge adatoms resulting in changes in the adsorption of substrates and/or products was suggested.

Original languageEnglish
Pages (from-to)105-123
Number of pages19
JournalApplied Catalysis A, General
Issue number2
Publication statusPublished - Aug 31 1993


  • Ge-Pd/C
  • Pd/C
  • X-ray photoelectron spectroscopy
  • alloys (palladium, germanium)
  • electrochemical polarization
  • hydrogenation
  • promotion

ASJC Scopus subject areas

  • Catalysis
  • Process Chemistry and Technology

Fingerprint Dive into the research topics of 'Oxidation state of germanium promoter on a palladium/ carbon catalyst and its role in hydrogenation reactions'. Together they form a unique fingerprint.

  • Cite this