Overview on R&D and design activities for the ITER core charge exchange spectroscopy diagnostic system

W. Biel, T. Baross, P. Bourauel, D. Dunai, M. Durkut, G. Erdei, N. Hawkes, M. V. Hellermann, A. Hogenbirk, R. Jaspers, G. Kiss, F. Klinkhamer, J. F. Koning, V. Kotov, Y. Krasikov, A. Krimmer, O. Lischtschenko, A. Litnovsky, O. Marchuk, O. NeubauerG. Offermanns, A. Panin, K. Patel, G. Pokol, M. Schrader, B. Snijders, V. Szabo, N. Van Der Valk, R. Voinchet, J. Wolters, S. Zoletnik

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

The ITER core charge exchange recombination spectroscopy (core CXRS) diagnostic system is designed to provide experimental access to various measurement quantities in the ITER core plasma such as ion densities, temperatures and velocities. The implementation of the approved CXRS diagnostic principle on ITER faces significant challenges: First, a comparatively low CXRS signal intensity is expected, together with a high noise level due to bremsstrahlung, while the requested measurement accuracy and stability for the core CXRS system go far beyond the level commonly achieved in present-day fusion experiments. Second, the lifetime of the first mirror surface is limited due to either erosion by fast particle bombardment or deposition of impurities. Finally, the hostile technical environment on ITER imposes challenging boundary conditions for the diagnostic integration and operation, including high neutron loads, electro-magnetic loads, seismic events and a limited access for maintenance. A brief overview on the R&D and design activities for the core CXRS system is presented here, while the details are described in parallel papers.

Original languageEnglish
Pages (from-to)548-551
Number of pages4
JournalFusion Engineering and Design
Volume86
Issue number6-8
DOIs
Publication statusPublished - Oct 2011

Fingerprint

Spectroscopy
Erosion
Neutrons
Mirrors
Fusion reactions
Boundary conditions
Impurities
Ions
Plasmas
Experiments
Temperature

Keywords

  • Active spectroscopy
  • Diagnostic
  • ITER
  • Mechanical engineering
  • Optical design
  • Upper port plug

ASJC Scopus subject areas

  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Civil and Structural Engineering
  • Mechanical Engineering

Cite this

Overview on R&D and design activities for the ITER core charge exchange spectroscopy diagnostic system. / Biel, W.; Baross, T.; Bourauel, P.; Dunai, D.; Durkut, M.; Erdei, G.; Hawkes, N.; Hellermann, M. V.; Hogenbirk, A.; Jaspers, R.; Kiss, G.; Klinkhamer, F.; Koning, J. F.; Kotov, V.; Krasikov, Y.; Krimmer, A.; Lischtschenko, O.; Litnovsky, A.; Marchuk, O.; Neubauer, O.; Offermanns, G.; Panin, A.; Patel, K.; Pokol, G.; Schrader, M.; Snijders, B.; Szabo, V.; Van Der Valk, N.; Voinchet, R.; Wolters, J.; Zoletnik, S.

In: Fusion Engineering and Design, Vol. 86, No. 6-8, 10.2011, p. 548-551.

Research output: Contribution to journalArticle

Biel, W, Baross, T, Bourauel, P, Dunai, D, Durkut, M, Erdei, G, Hawkes, N, Hellermann, MV, Hogenbirk, A, Jaspers, R, Kiss, G, Klinkhamer, F, Koning, JF, Kotov, V, Krasikov, Y, Krimmer, A, Lischtschenko, O, Litnovsky, A, Marchuk, O, Neubauer, O, Offermanns, G, Panin, A, Patel, K, Pokol, G, Schrader, M, Snijders, B, Szabo, V, Van Der Valk, N, Voinchet, R, Wolters, J & Zoletnik, S 2011, 'Overview on R&D and design activities for the ITER core charge exchange spectroscopy diagnostic system', Fusion Engineering and Design, vol. 86, no. 6-8, pp. 548-551. https://doi.org/10.1016/j.fusengdes.2011.02.086
Biel, W. ; Baross, T. ; Bourauel, P. ; Dunai, D. ; Durkut, M. ; Erdei, G. ; Hawkes, N. ; Hellermann, M. V. ; Hogenbirk, A. ; Jaspers, R. ; Kiss, G. ; Klinkhamer, F. ; Koning, J. F. ; Kotov, V. ; Krasikov, Y. ; Krimmer, A. ; Lischtschenko, O. ; Litnovsky, A. ; Marchuk, O. ; Neubauer, O. ; Offermanns, G. ; Panin, A. ; Patel, K. ; Pokol, G. ; Schrader, M. ; Snijders, B. ; Szabo, V. ; Van Der Valk, N. ; Voinchet, R. ; Wolters, J. ; Zoletnik, S. / Overview on R&D and design activities for the ITER core charge exchange spectroscopy diagnostic system. In: Fusion Engineering and Design. 2011 ; Vol. 86, No. 6-8. pp. 548-551.
@article{dde3403d668b4eb6b5c19baabe305e2b,
title = "Overview on R&D and design activities for the ITER core charge exchange spectroscopy diagnostic system",
abstract = "The ITER core charge exchange recombination spectroscopy (core CXRS) diagnostic system is designed to provide experimental access to various measurement quantities in the ITER core plasma such as ion densities, temperatures and velocities. The implementation of the approved CXRS diagnostic principle on ITER faces significant challenges: First, a comparatively low CXRS signal intensity is expected, together with a high noise level due to bremsstrahlung, while the requested measurement accuracy and stability for the core CXRS system go far beyond the level commonly achieved in present-day fusion experiments. Second, the lifetime of the first mirror surface is limited due to either erosion by fast particle bombardment or deposition of impurities. Finally, the hostile technical environment on ITER imposes challenging boundary conditions for the diagnostic integration and operation, including high neutron loads, electro-magnetic loads, seismic events and a limited access for maintenance. A brief overview on the R&D and design activities for the core CXRS system is presented here, while the details are described in parallel papers.",
keywords = "Active spectroscopy, Diagnostic, ITER, Mechanical engineering, Optical design, Upper port plug",
author = "W. Biel and T. Baross and P. Bourauel and D. Dunai and M. Durkut and G. Erdei and N. Hawkes and Hellermann, {M. V.} and A. Hogenbirk and R. Jaspers and G. Kiss and F. Klinkhamer and Koning, {J. F.} and V. Kotov and Y. Krasikov and A. Krimmer and O. Lischtschenko and A. Litnovsky and O. Marchuk and O. Neubauer and G. Offermanns and A. Panin and K. Patel and G. Pokol and M. Schrader and B. Snijders and V. Szabo and {Van Der Valk}, N. and R. Voinchet and J. Wolters and S. Zoletnik",
year = "2011",
month = "10",
doi = "10.1016/j.fusengdes.2011.02.086",
language = "English",
volume = "86",
pages = "548--551",
journal = "Fusion Engineering and Design",
issn = "0920-3796",
publisher = "Elsevier BV",
number = "6-8",

}

TY - JOUR

T1 - Overview on R&D and design activities for the ITER core charge exchange spectroscopy diagnostic system

AU - Biel, W.

AU - Baross, T.

AU - Bourauel, P.

AU - Dunai, D.

AU - Durkut, M.

AU - Erdei, G.

AU - Hawkes, N.

AU - Hellermann, M. V.

AU - Hogenbirk, A.

AU - Jaspers, R.

AU - Kiss, G.

AU - Klinkhamer, F.

AU - Koning, J. F.

AU - Kotov, V.

AU - Krasikov, Y.

AU - Krimmer, A.

AU - Lischtschenko, O.

AU - Litnovsky, A.

AU - Marchuk, O.

AU - Neubauer, O.

AU - Offermanns, G.

AU - Panin, A.

AU - Patel, K.

AU - Pokol, G.

AU - Schrader, M.

AU - Snijders, B.

AU - Szabo, V.

AU - Van Der Valk, N.

AU - Voinchet, R.

AU - Wolters, J.

AU - Zoletnik, S.

PY - 2011/10

Y1 - 2011/10

N2 - The ITER core charge exchange recombination spectroscopy (core CXRS) diagnostic system is designed to provide experimental access to various measurement quantities in the ITER core plasma such as ion densities, temperatures and velocities. The implementation of the approved CXRS diagnostic principle on ITER faces significant challenges: First, a comparatively low CXRS signal intensity is expected, together with a high noise level due to bremsstrahlung, while the requested measurement accuracy and stability for the core CXRS system go far beyond the level commonly achieved in present-day fusion experiments. Second, the lifetime of the first mirror surface is limited due to either erosion by fast particle bombardment or deposition of impurities. Finally, the hostile technical environment on ITER imposes challenging boundary conditions for the diagnostic integration and operation, including high neutron loads, electro-magnetic loads, seismic events and a limited access for maintenance. A brief overview on the R&D and design activities for the core CXRS system is presented here, while the details are described in parallel papers.

AB - The ITER core charge exchange recombination spectroscopy (core CXRS) diagnostic system is designed to provide experimental access to various measurement quantities in the ITER core plasma such as ion densities, temperatures and velocities. The implementation of the approved CXRS diagnostic principle on ITER faces significant challenges: First, a comparatively low CXRS signal intensity is expected, together with a high noise level due to bremsstrahlung, while the requested measurement accuracy and stability for the core CXRS system go far beyond the level commonly achieved in present-day fusion experiments. Second, the lifetime of the first mirror surface is limited due to either erosion by fast particle bombardment or deposition of impurities. Finally, the hostile technical environment on ITER imposes challenging boundary conditions for the diagnostic integration and operation, including high neutron loads, electro-magnetic loads, seismic events and a limited access for maintenance. A brief overview on the R&D and design activities for the core CXRS system is presented here, while the details are described in parallel papers.

KW - Active spectroscopy

KW - Diagnostic

KW - ITER

KW - Mechanical engineering

KW - Optical design

KW - Upper port plug

UR - http://www.scopus.com/inward/record.url?scp=80054010244&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80054010244&partnerID=8YFLogxK

U2 - 10.1016/j.fusengdes.2011.02.086

DO - 10.1016/j.fusengdes.2011.02.086

M3 - Article

AN - SCOPUS:80054010244

VL - 86

SP - 548

EP - 551

JO - Fusion Engineering and Design

JF - Fusion Engineering and Design

SN - 0920-3796

IS - 6-8

ER -