One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation

Andrei S. Rodin, E. Szathmáry, S. Rodin

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Background: The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem. Results: Our main result is the emergence of a palindrome structure for the acceptor stem's common ancestor, reconstructed from the phylogenetic trees of Bacteria, Archaea and Eukarya. In parallel, for pairs of ancestral tRNAs with complementary anticodons, we present updated evidence of concerted complementarity of the second bases in the acceptor stems. These two results suggest that the first pairs of "complementary" amino acids that were engaged in primordial coding, such as Gly and Ala, could have avoided erroneous aminoacylation if and only if the acceptor stems of their adaptors were recognized from the same, major groove, side. The class II protein synthetases then inherited this "primary preference" from isofunctional ribozymes. Conclusion: Taken together, our results support the hypothesis that the genetic code per se (the one associated with the anticodons) and the operational code of aminoacylation (associated with the acceptor) diverged from a common ancestor that probably began developing before translation. The primordial advantage of linking some amino acids (most likely glycine and alanine) to the ancestral acceptor stem may have been selective retention in a protocell surrounded by a leaky membrane for use in nucleotide and coenzyme synthesis. Such acceptor stems (as cofactors) thus transferred amino acids as groups for biosynthesis. Later, with the advent of an anticodon loop, some amino acids (such as aspartic acid, histidine, arginine) assumed a catalytic role while bound to such extended adaptors, in line with the original coding coenzyme handle (CCH) hypothesis.

Original languageEnglish
Article number4
JournalBiology Direct
Volume4
DOIs
Publication statusPublished - Jan 27 2009

Fingerprint

aminoacylation
Transfer RNA Aminoacylation
Anticodon
Transfer RNA
ancestry
Amino Acids
Amino acids
stem
amino acid
stems
Aminoacylation
Genetic Code
Coenzymes
amino acids
Ligases
common ancestry
genetic code
coenzymes
Coding
aminoacyl tRNA ligases

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology
  • Applied Mathematics
  • Modelling and Simulation
  • Ecology, Evolution, Behavior and Systematics

Cite this

One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation. / Rodin, Andrei S.; Szathmáry, E.; Rodin, S.

In: Biology Direct, Vol. 4, 4, 27.01.2009.

Research output: Contribution to journalArticle

@article{30220062e885492aa2200eec6d3dd611,
title = "One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation",
abstract = "Background: The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem. Results: Our main result is the emergence of a palindrome structure for the acceptor stem's common ancestor, reconstructed from the phylogenetic trees of Bacteria, Archaea and Eukarya. In parallel, for pairs of ancestral tRNAs with complementary anticodons, we present updated evidence of concerted complementarity of the second bases in the acceptor stems. These two results suggest that the first pairs of {"}complementary{"} amino acids that were engaged in primordial coding, such as Gly and Ala, could have avoided erroneous aminoacylation if and only if the acceptor stems of their adaptors were recognized from the same, major groove, side. The class II protein synthetases then inherited this {"}primary preference{"} from isofunctional ribozymes. Conclusion: Taken together, our results support the hypothesis that the genetic code per se (the one associated with the anticodons) and the operational code of aminoacylation (associated with the acceptor) diverged from a common ancestor that probably began developing before translation. The primordial advantage of linking some amino acids (most likely glycine and alanine) to the ancestral acceptor stem may have been selective retention in a protocell surrounded by a leaky membrane for use in nucleotide and coenzyme synthesis. Such acceptor stems (as cofactors) thus transferred amino acids as groups for biosynthesis. Later, with the advent of an anticodon loop, some amino acids (such as aspartic acid, histidine, arginine) assumed a catalytic role while bound to such extended adaptors, in line with the original coding coenzyme handle (CCH) hypothesis.",
author = "Rodin, {Andrei S.} and E. Szathm{\'a}ry and S. Rodin",
year = "2009",
month = "1",
day = "27",
doi = "10.1186/1745-6150-4-4",
language = "English",
volume = "4",
journal = "Biology Direct",
issn = "1745-6150",
publisher = "BioMed Central",

}

TY - JOUR

T1 - One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation

AU - Rodin, Andrei S.

AU - Szathmáry, E.

AU - Rodin, S.

PY - 2009/1/27

Y1 - 2009/1/27

N2 - Background: The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem. Results: Our main result is the emergence of a palindrome structure for the acceptor stem's common ancestor, reconstructed from the phylogenetic trees of Bacteria, Archaea and Eukarya. In parallel, for pairs of ancestral tRNAs with complementary anticodons, we present updated evidence of concerted complementarity of the second bases in the acceptor stems. These two results suggest that the first pairs of "complementary" amino acids that were engaged in primordial coding, such as Gly and Ala, could have avoided erroneous aminoacylation if and only if the acceptor stems of their adaptors were recognized from the same, major groove, side. The class II protein synthetases then inherited this "primary preference" from isofunctional ribozymes. Conclusion: Taken together, our results support the hypothesis that the genetic code per se (the one associated with the anticodons) and the operational code of aminoacylation (associated with the acceptor) diverged from a common ancestor that probably began developing before translation. The primordial advantage of linking some amino acids (most likely glycine and alanine) to the ancestral acceptor stem may have been selective retention in a protocell surrounded by a leaky membrane for use in nucleotide and coenzyme synthesis. Such acceptor stems (as cofactors) thus transferred amino acids as groups for biosynthesis. Later, with the advent of an anticodon loop, some amino acids (such as aspartic acid, histidine, arginine) assumed a catalytic role while bound to such extended adaptors, in line with the original coding coenzyme handle (CCH) hypothesis.

AB - Background: The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem. Results: Our main result is the emergence of a palindrome structure for the acceptor stem's common ancestor, reconstructed from the phylogenetic trees of Bacteria, Archaea and Eukarya. In parallel, for pairs of ancestral tRNAs with complementary anticodons, we present updated evidence of concerted complementarity of the second bases in the acceptor stems. These two results suggest that the first pairs of "complementary" amino acids that were engaged in primordial coding, such as Gly and Ala, could have avoided erroneous aminoacylation if and only if the acceptor stems of their adaptors were recognized from the same, major groove, side. The class II protein synthetases then inherited this "primary preference" from isofunctional ribozymes. Conclusion: Taken together, our results support the hypothesis that the genetic code per se (the one associated with the anticodons) and the operational code of aminoacylation (associated with the acceptor) diverged from a common ancestor that probably began developing before translation. The primordial advantage of linking some amino acids (most likely glycine and alanine) to the ancestral acceptor stem may have been selective retention in a protocell surrounded by a leaky membrane for use in nucleotide and coenzyme synthesis. Such acceptor stems (as cofactors) thus transferred amino acids as groups for biosynthesis. Later, with the advent of an anticodon loop, some amino acids (such as aspartic acid, histidine, arginine) assumed a catalytic role while bound to such extended adaptors, in line with the original coding coenzyme handle (CCH) hypothesis.

UR - http://www.scopus.com/inward/record.url?scp=65349164271&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65349164271&partnerID=8YFLogxK

U2 - 10.1186/1745-6150-4-4

DO - 10.1186/1745-6150-4-4

M3 - Article

C2 - 19173731

AN - SCOPUS:65349164271

VL - 4

JO - Biology Direct

JF - Biology Direct

SN - 1745-6150

M1 - 4

ER -