### Abstract

The Riemannian metric induced by quantum α-entropies is proven to be monotone under stochastic mappings on the set of density matrices. The length of tangent vectors is essentially the Wigner-Yanase-Dyson skew information in this setting.

Original language | English |
---|---|

Pages (from-to) | 221-225 |

Number of pages | 5 |

Journal | Letters in Mathematical Physics |

Volume | 38 |

Issue number | 2 |

Publication status | Published - 1996 |

### Fingerprint

### Keywords

- Density matrices
- Riemannian metrics
- Statistical mechanics

### ASJC Scopus subject areas

- Mathematical Physics
- Physics and Astronomy(all)
- Statistical and Nonlinear Physics

### Cite this

*Letters in Mathematical Physics*,

*38*(2), 221-225.

**On the Riemannian Metric of α-Entropies of Density Matrices.** / Petz, D.; Hasegawa, Hiroshi.

Research output: Contribution to journal › Article

*Letters in Mathematical Physics*, vol. 38, no. 2, pp. 221-225.

}

TY - JOUR

T1 - On the Riemannian Metric of α-Entropies of Density Matrices

AU - Petz, D.

AU - Hasegawa, Hiroshi

PY - 1996

Y1 - 1996

N2 - The Riemannian metric induced by quantum α-entropies is proven to be monotone under stochastic mappings on the set of density matrices. The length of tangent vectors is essentially the Wigner-Yanase-Dyson skew information in this setting.

AB - The Riemannian metric induced by quantum α-entropies is proven to be monotone under stochastic mappings on the set of density matrices. The length of tangent vectors is essentially the Wigner-Yanase-Dyson skew information in this setting.

KW - Density matrices

KW - Riemannian metrics

KW - Statistical mechanics

UR - http://www.scopus.com/inward/record.url?scp=0009130255&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0009130255&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0009130255

VL - 38

SP - 221

EP - 225

JO - Letters in Mathematical Physics

JF - Letters in Mathematical Physics

SN - 0377-9017

IS - 2

ER -