### Abstract

Let n and k be arbitrary natural numbers. We prove that for a typical continuous function f, every neighborhood of any periodic point of f with period n contains periodic points of f with period n.k.

Original language | English |
---|---|

Pages (from-to) | 244-249 |

Number of pages | 6 |

Journal | Proceedings of the American Mathematical Society |

Volume | 105 |

Issue number | 1 |

DOIs | |

Publication status | Published - 1989 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)
- Applied Mathematics

### Cite this

**On the periodic points of a typical continuous function.** / Simon, K.

Research output: Contribution to journal › Article

*Proceedings of the American Mathematical Society*, vol. 105, no. 1, pp. 244-249. https://doi.org/10.1090/S0002-9939-1989-0929418-0

}

TY - JOUR

T1 - On the periodic points of a typical continuous function

AU - Simon, K.

PY - 1989

Y1 - 1989

N2 - Let n and k be arbitrary natural numbers. We prove that for a typical continuous function f, every neighborhood of any periodic point of f with period n contains periodic points of f with period n.k.

AB - Let n and k be arbitrary natural numbers. We prove that for a typical continuous function f, every neighborhood of any periodic point of f with period n contains periodic points of f with period n.k.

UR - http://www.scopus.com/inward/record.url?scp=84966241346&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966241346&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-1989-0929418-0

DO - 10.1090/S0002-9939-1989-0929418-0

M3 - Article

AN - SCOPUS:84966241346

VL - 105

SP - 244

EP - 249

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 1

ER -