### Abstract

Let G be a graph on n vertices, i(G) the number of pairwise non-isomorphic induced subgraphs of G and k≥ 1. We prove that if i(G) = o(n^{ k+1}) then by omitting o(n) vertices the graph can be made (l, m)-almost canonical with l + m ≤ k + 1.

Original language | English |
---|---|

Pages (from-to) | 145-154 |

Number of pages | 10 |

Journal | Annals of Discrete Mathematics |

Volume | 43 |

Issue number | C |

DOIs | |

Publication status | Published - 1989 |

### Fingerprint

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics

### Cite this

*Annals of Discrete Mathematics*,

*43*(C), 145-154. https://doi.org/10.1016/S0167-5060(08)70573-9

**On The Number of Distinct Induced Subgraphs of a Graph.** / Erdős, P.; Hajnal, A.

Research output: Contribution to journal › Article

*Annals of Discrete Mathematics*, vol. 43, no. C, pp. 145-154. https://doi.org/10.1016/S0167-5060(08)70573-9

}

TY - JOUR

T1 - On The Number of Distinct Induced Subgraphs of a Graph

AU - Erdős, P.

AU - Hajnal, A.

PY - 1989

Y1 - 1989

N2 - Let G be a graph on n vertices, i(G) the number of pairwise non-isomorphic induced subgraphs of G and k≥ 1. We prove that if i(G) = o(n k+1) then by omitting o(n) vertices the graph can be made (l, m)-almost canonical with l + m ≤ k + 1.

AB - Let G be a graph on n vertices, i(G) the number of pairwise non-isomorphic induced subgraphs of G and k≥ 1. We prove that if i(G) = o(n k+1) then by omitting o(n) vertices the graph can be made (l, m)-almost canonical with l + m ≤ k + 1.

UR - http://www.scopus.com/inward/record.url?scp=77957802886&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77957802886&partnerID=8YFLogxK

U2 - 10.1016/S0167-5060(08)70573-9

DO - 10.1016/S0167-5060(08)70573-9

M3 - Article

AN - SCOPUS:77957802886

VL - 43

SP - 145

EP - 154

JO - Annals of Discrete Mathematics

JF - Annals of Discrete Mathematics

SN - 0167-5060

IS - C

ER -