### Abstract

Let G be a graph on n vertices, i(G) the number of pairwise non-isomorphic induced subgraphs of G and k≥1. We prove that if i(G)=o(n^{k+1}) then by omitting o(n) vertices the graph can be made (l,m)-almost canonical with l+m≤k+1.

Original language | English |
---|---|

Pages (from-to) | 145-154 |

Number of pages | 10 |

Journal | Discrete Mathematics |

Volume | 75 |

Issue number | 1-3 |

DOIs | |

Publication status | Published - 1989 |

### Fingerprint

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Theoretical Computer Science

### Cite this

*Discrete Mathematics*,

*75*(1-3), 145-154. https://doi.org/10.1016/0012-365X(89)90085-X

**On the number of distinct induced subgraphs of a graph.** / Erdős, P.; Hajnal, A.

Research output: Contribution to journal › Article

*Discrete Mathematics*, vol. 75, no. 1-3, pp. 145-154. https://doi.org/10.1016/0012-365X(89)90085-X

}

TY - JOUR

T1 - On the number of distinct induced subgraphs of a graph

AU - Erdős, P.

AU - Hajnal, A.

PY - 1989

Y1 - 1989

N2 - Let G be a graph on n vertices, i(G) the number of pairwise non-isomorphic induced subgraphs of G and k≥1. We prove that if i(G)=o(nk+1) then by omitting o(n) vertices the graph can be made (l,m)-almost canonical with l+m≤k+1.

AB - Let G be a graph on n vertices, i(G) the number of pairwise non-isomorphic induced subgraphs of G and k≥1. We prove that if i(G)=o(nk+1) then by omitting o(n) vertices the graph can be made (l,m)-almost canonical with l+m≤k+1.

UR - http://www.scopus.com/inward/record.url?scp=0039605746&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0039605746&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(89)90085-X

DO - 10.1016/0012-365X(89)90085-X

M3 - Article

VL - 75

SP - 145

EP - 154

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1-3

ER -