On the monotonicity and linearity of ideal radix-based A/D converters

János Márkus, István Kollár

Research output: Contribution to journalArticle

1 Citation (Scopus)


Both cyclic and pipelined analog-to-digital (A/D) converters are getting more and more popular, as they are relatively easy to design and either have a high throughput (pipelined converters) or small area- and power-consumption (cyclic/algorithmic converters). To avoid saturation and to ensure effective digital calibration, in the analog stage(s) of these converters, instead of the ideal two, often a smaller nominal gain (called radix number) is used. In this paper, it is shown that these radix-based converters have nonmonotonic output and finite linearity. The causes of these phenomena are discussed in detail. Fully digital method is suggested to remove nonmonotonic code transitions and estimation on the maximum differential nonlinearity of the ideal converter as a function of the number of cycles is presented.

Original languageEnglish
Pages (from-to)2454-2457
Number of pages4
JournalIEEE Transactions on Instrumentation and Measurement
Issue number6
Publication statusPublished - Dec 1 2005


  • Algorithmic
  • Analog-digital (A/D) conversion
  • Cyclic
  • DNL
  • Differential nonlinearity
  • Linearity
  • Monotonicity
  • Multistage pipelined
  • Nonradix-2
  • Radix less than 2
  • Subradix ADC
  • subranging A/D converter

ASJC Scopus subject areas

  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'On the monotonicity and linearity of ideal radix-based A/D converters'. Together they form a unique fingerprint.

  • Cite this