On the invariance of Colin de Verdière's graph parameter under clique sums

Hein van der Holst, László Lovász, Alexander Schrijver

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

For any undirected graph G, let μ(G) be the graph invariant introduced by Colin de Verdière. In this paper we study the behavior of μ(G) under clique sums of graphs. In particular, we give a forbidden minor characterization of those clique sums G of G1 and G2 for which μ(G) = max{μ(G1), μ(G2)}.

Original languageEnglish
Pages (from-to)509-517
Number of pages9
JournalLinear Algebra and Its Applications
Volume226-228
Issue numberC
DOIs
Publication statusPublished - 1995

Fingerprint

Invariance
Clique
Forbidden Minor
Graph Invariants
Graph in graph theory
Undirected Graph

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Discrete Mathematics and Combinatorics
  • Geometry and Topology
  • Numerical Analysis

Cite this

On the invariance of Colin de Verdière's graph parameter under clique sums. / van der Holst, Hein; Lovász, László; Schrijver, Alexander.

In: Linear Algebra and Its Applications, Vol. 226-228, No. C, 1995, p. 509-517.

Research output: Contribution to journalArticle

van der Holst, Hein ; Lovász, László ; Schrijver, Alexander. / On the invariance of Colin de Verdière's graph parameter under clique sums. In: Linear Algebra and Its Applications. 1995 ; Vol. 226-228, No. C. pp. 509-517.
@article{2127d0b308184ce594c557683e01dad9,
title = "On the invariance of Colin de Verdi{\`e}re's graph parameter under clique sums",
abstract = "For any undirected graph G, let μ(G) be the graph invariant introduced by Colin de Verdi{\`e}re. In this paper we study the behavior of μ(G) under clique sums of graphs. In particular, we give a forbidden minor characterization of those clique sums G of G1 and G2 for which μ(G) = max{μ(G1), μ(G2)}.",
author = "{van der Holst}, Hein and L{\'a}szl{\'o} Lov{\'a}sz and Alexander Schrijver",
year = "1995",
doi = "10.1016/0024-3795(95)00160-S",
language = "English",
volume = "226-228",
pages = "509--517",
journal = "Linear Algebra and Its Applications",
issn = "0024-3795",
publisher = "Elsevier Inc.",
number = "C",

}

TY - JOUR

T1 - On the invariance of Colin de Verdière's graph parameter under clique sums

AU - van der Holst, Hein

AU - Lovász, László

AU - Schrijver, Alexander

PY - 1995

Y1 - 1995

N2 - For any undirected graph G, let μ(G) be the graph invariant introduced by Colin de Verdière. In this paper we study the behavior of μ(G) under clique sums of graphs. In particular, we give a forbidden minor characterization of those clique sums G of G1 and G2 for which μ(G) = max{μ(G1), μ(G2)}.

AB - For any undirected graph G, let μ(G) be the graph invariant introduced by Colin de Verdière. In this paper we study the behavior of μ(G) under clique sums of graphs. In particular, we give a forbidden minor characterization of those clique sums G of G1 and G2 for which μ(G) = max{μ(G1), μ(G2)}.

UR - http://www.scopus.com/inward/record.url?scp=22044441803&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=22044441803&partnerID=8YFLogxK

U2 - 10.1016/0024-3795(95)00160-S

DO - 10.1016/0024-3795(95)00160-S

M3 - Article

AN - SCOPUS:22044441803

VL - 226-228

SP - 509

EP - 517

JO - Linear Algebra and Its Applications

JF - Linear Algebra and Its Applications

SN - 0024-3795

IS - C

ER -