On the fractional matching polytope of a hypergraph

Z. Füredi, J. Kahn, P. D. Seymour

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

For a hypergraph ℋ and b:ℋ→ℝ+ define[Figure not available: see fulltext.] Conjecture. There is a matching ℳ of ℋ such that[Figure not available: see fulltext.] For uniform ℋ and b constant this is the main theorem of [4]. Here we prove the conjecture if ℋ is uniform or intersecting, or b is constant.

Original languageEnglish
Pages (from-to)167-180
Number of pages14
JournalCombinatorica
Volume13
Issue number2
DOIs
Publication statusPublished - Jun 1993

Fingerprint

Hypergraph
Polytope
Figure
Fractional
Theorem

Keywords

  • AMS Subject Classification Code (1991): 05D15

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Mathematics(all)

Cite this

On the fractional matching polytope of a hypergraph. / Füredi, Z.; Kahn, J.; Seymour, P. D.

In: Combinatorica, Vol. 13, No. 2, 06.1993, p. 167-180.

Research output: Contribution to journalArticle

Füredi, Z. ; Kahn, J. ; Seymour, P. D. / On the fractional matching polytope of a hypergraph. In: Combinatorica. 1993 ; Vol. 13, No. 2. pp. 167-180.
@article{c56e466299554d56b37697473f40a11f,
title = "On the fractional matching polytope of a hypergraph",
abstract = "For a hypergraph ℋ and b:ℋ→ℝ+ define[Figure not available: see fulltext.] Conjecture. There is a matching ℳ of ℋ such that[Figure not available: see fulltext.] For uniform ℋ and b constant this is the main theorem of [4]. Here we prove the conjecture if ℋ is uniform or intersecting, or b is constant.",
keywords = "AMS Subject Classification Code (1991): 05D15",
author = "Z. F{\"u}redi and J. Kahn and Seymour, {P. D.}",
year = "1993",
month = "6",
doi = "10.1007/BF01303202",
language = "English",
volume = "13",
pages = "167--180",
journal = "Combinatorica",
issn = "0209-9683",
publisher = "Janos Bolyai Mathematical Society",
number = "2",

}

TY - JOUR

T1 - On the fractional matching polytope of a hypergraph

AU - Füredi, Z.

AU - Kahn, J.

AU - Seymour, P. D.

PY - 1993/6

Y1 - 1993/6

N2 - For a hypergraph ℋ and b:ℋ→ℝ+ define[Figure not available: see fulltext.] Conjecture. There is a matching ℳ of ℋ such that[Figure not available: see fulltext.] For uniform ℋ and b constant this is the main theorem of [4]. Here we prove the conjecture if ℋ is uniform or intersecting, or b is constant.

AB - For a hypergraph ℋ and b:ℋ→ℝ+ define[Figure not available: see fulltext.] Conjecture. There is a matching ℳ of ℋ such that[Figure not available: see fulltext.] For uniform ℋ and b constant this is the main theorem of [4]. Here we prove the conjecture if ℋ is uniform or intersecting, or b is constant.

KW - AMS Subject Classification Code (1991): 05D15

UR - http://www.scopus.com/inward/record.url?scp=0010784118&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0010784118&partnerID=8YFLogxK

U2 - 10.1007/BF01303202

DO - 10.1007/BF01303202

M3 - Article

VL - 13

SP - 167

EP - 180

JO - Combinatorica

JF - Combinatorica

SN - 0209-9683

IS - 2

ER -