On the equation x(x + d). . . (x + (k - 1)d) = by2

B. Brindza, L. Hajdu, I. Ruzsa

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

In this paper we give a new bound for the solutions x of the title equation, provided that k ≥ 8. This bound is polynomial in d. Moreover, under the same condition, a similar bound for the number of solutions in (x, k, y, l) is given.

Original languageEnglish
Pages (from-to)255-261
Number of pages7
JournalGlasgow Mathematical Journal
Volume42
Issue number2
Publication statusPublished - 2000

Fingerprint

Number of Solutions
Polynomial

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

On the equation x(x + d). . . (x + (k - 1)d) = by2. / Brindza, B.; Hajdu, L.; Ruzsa, I.

In: Glasgow Mathematical Journal, Vol. 42, No. 2, 2000, p. 255-261.

Research output: Contribution to journalArticle

Brindza, B, Hajdu, L & Ruzsa, I 2000, 'On the equation x(x + d). . . (x + (k - 1)d) = by2', Glasgow Mathematical Journal, vol. 42, no. 2, pp. 255-261.
Brindza, B. ; Hajdu, L. ; Ruzsa, I. / On the equation x(x + d). . . (x + (k - 1)d) = by2. In: Glasgow Mathematical Journal. 2000 ; Vol. 42, No. 2. pp. 255-261.
@article{99c9813047e041ffa353a175c7c98bc1,
title = "On the equation x(x + d). . . (x + (k - 1)d) = by2",
abstract = "In this paper we give a new bound for the solutions x of the title equation, provided that k ≥ 8. This bound is polynomial in d. Moreover, under the same condition, a similar bound for the number of solutions in (x, k, y, l) is given.",
author = "B. Brindza and L. Hajdu and I. Ruzsa",
year = "2000",
language = "English",
volume = "42",
pages = "255--261",
journal = "Glasgow Mathematical Journal",
issn = "0017-0895",
publisher = "Cambridge University Press",
number = "2",

}

TY - JOUR

T1 - On the equation x(x + d). . . (x + (k - 1)d) = by2

AU - Brindza, B.

AU - Hajdu, L.

AU - Ruzsa, I.

PY - 2000

Y1 - 2000

N2 - In this paper we give a new bound for the solutions x of the title equation, provided that k ≥ 8. This bound is polynomial in d. Moreover, under the same condition, a similar bound for the number of solutions in (x, k, y, l) is given.

AB - In this paper we give a new bound for the solutions x of the title equation, provided that k ≥ 8. This bound is polynomial in d. Moreover, under the same condition, a similar bound for the number of solutions in (x, k, y, l) is given.

UR - http://www.scopus.com/inward/record.url?scp=0000154687&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000154687&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000154687

VL - 42

SP - 255

EP - 261

JO - Glasgow Mathematical Journal

JF - Glasgow Mathematical Journal

SN - 0017-0895

IS - 2

ER -