### Abstract

In this paper we give a new bound for the solutions x of the title equation, provided that k ≥ 8. This bound is polynomial in d. Moreover, under the same condition, a similar bound for the number of solutions in (x, k, y, l) is given.

Original language | English |
---|---|

Pages (from-to) | 255-261 |

Number of pages | 7 |

Journal | Glasgow Mathematical Journal |

Volume | 42 |

Issue number | 2 |

Publication status | Published - 2000 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

^{2}.

*Glasgow Mathematical Journal*,

*42*(2), 255-261.

**On the equation x(x + d). . . (x + (k - 1)d) = by ^{2}.** / Brindza, B.; Hajdu, L.; Ruzsa, I.

Research output: Contribution to journal › Article

^{2}',

*Glasgow Mathematical Journal*, vol. 42, no. 2, pp. 255-261.

^{2}. Glasgow Mathematical Journal. 2000;42(2):255-261.

}

TY - JOUR

T1 - On the equation x(x + d). . . (x + (k - 1)d) = by2

AU - Brindza, B.

AU - Hajdu, L.

AU - Ruzsa, I.

PY - 2000

Y1 - 2000

N2 - In this paper we give a new bound for the solutions x of the title equation, provided that k ≥ 8. This bound is polynomial in d. Moreover, under the same condition, a similar bound for the number of solutions in (x, k, y, l) is given.

AB - In this paper we give a new bound for the solutions x of the title equation, provided that k ≥ 8. This bound is polynomial in d. Moreover, under the same condition, a similar bound for the number of solutions in (x, k, y, l) is given.

UR - http://www.scopus.com/inward/record.url?scp=0000154687&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000154687&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000154687

VL - 42

SP - 255

EP - 261

JO - Glasgow Mathematical Journal

JF - Glasgow Mathematical Journal

SN - 0017-0895

IS - 2

ER -