### Abstract

Let G_{n} be a graph of n vertices, having chromatic number r which contains no complete graph of r vertices. Then G_{n} contains a vertex of degree not exceeding n(3r-7)/(3r-4). The result is essentially best possible.

Original language | English |
---|---|

Pages (from-to) | 205-218 |

Number of pages | 14 |

Journal | Discrete Mathematics |

Volume | 8 |

Issue number | 3 |

DOIs | |

Publication status | Published - 1974 |

### Fingerprint

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Theoretical Computer Science

### Cite this

*Discrete Mathematics*,

*8*(3), 205-218. https://doi.org/10.1016/0012-365X(74)90133-2

**On the connection between chromatic number, maximal clique and minimal degree of a graph.** / Andrásfai, B.; Erdős, P.; Sós, V. T.

Research output: Contribution to journal › Article

*Discrete Mathematics*, vol. 8, no. 3, pp. 205-218. https://doi.org/10.1016/0012-365X(74)90133-2

}

TY - JOUR

T1 - On the connection between chromatic number, maximal clique and minimal degree of a graph

AU - Andrásfai, B.

AU - Erdős, P.

AU - Sós, V. T.

PY - 1974

Y1 - 1974

N2 - Let Gn be a graph of n vertices, having chromatic number r which contains no complete graph of r vertices. Then Gn contains a vertex of degree not exceeding n(3r-7)/(3r-4). The result is essentially best possible.

AB - Let Gn be a graph of n vertices, having chromatic number r which contains no complete graph of r vertices. Then Gn contains a vertex of degree not exceeding n(3r-7)/(3r-4). The result is essentially best possible.

UR - http://www.scopus.com/inward/record.url?scp=0008740710&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0008740710&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(74)90133-2

DO - 10.1016/0012-365X(74)90133-2

M3 - Article

AN - SCOPUS:0008740710

VL - 8

SP - 205

EP - 218

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 3

ER -