On divisors of sums of integers, III

Carl Pomerance, A. Sárközy, C. L. Stewart

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

In this paper we show that if A1, A2, …, Ak are "dense" sets of integers, then there is a sum a1 + a2 + … + ak with a1 ∈ A1, a2 ∈ A2, …, ak ∈ Ak that is divisible by a "small" prime.

Original languageEnglish
Pages (from-to)363-379
Number of pages17
JournalPacific Journal of Mathematics
Volume133
Issue number2
Publication statusPublished - 1988

Fingerprint

Sum of integers
Divisible
Divisor
Integer

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Pomerance, C., Sárközy, A., & Stewart, C. L. (1988). On divisors of sums of integers, III. Pacific Journal of Mathematics, 133(2), 363-379.

On divisors of sums of integers, III. / Pomerance, Carl; Sárközy, A.; Stewart, C. L.

In: Pacific Journal of Mathematics, Vol. 133, No. 2, 1988, p. 363-379.

Research output: Contribution to journalArticle

Pomerance, C, Sárközy, A & Stewart, CL 1988, 'On divisors of sums of integers, III', Pacific Journal of Mathematics, vol. 133, no. 2, pp. 363-379.
Pomerance, Carl ; Sárközy, A. ; Stewart, C. L. / On divisors of sums of integers, III. In: Pacific Journal of Mathematics. 1988 ; Vol. 133, No. 2. pp. 363-379.
@article{d94e42c75fa5422388cdc25000d82fbc,
title = "On divisors of sums of integers, III",
abstract = "In this paper we show that if A1, A2, …, Ak are {"}dense{"} sets of integers, then there is a sum a1 + a2 + … + ak with a1 ∈ A1, a2 ∈ A2, …, ak ∈ Ak that is divisible by a {"}small{"} prime.",
author = "Carl Pomerance and A. S{\'a}rk{\"o}zy and Stewart, {C. L.}",
year = "1988",
language = "English",
volume = "133",
pages = "363--379",
journal = "Pacific Journal of Mathematics",
issn = "0030-8730",
publisher = "University of California, Berkeley",
number = "2",

}

TY - JOUR

T1 - On divisors of sums of integers, III

AU - Pomerance, Carl

AU - Sárközy, A.

AU - Stewart, C. L.

PY - 1988

Y1 - 1988

N2 - In this paper we show that if A1, A2, …, Ak are "dense" sets of integers, then there is a sum a1 + a2 + … + ak with a1 ∈ A1, a2 ∈ A2, …, ak ∈ Ak that is divisible by a "small" prime.

AB - In this paper we show that if A1, A2, …, Ak are "dense" sets of integers, then there is a sum a1 + a2 + … + ak with a1 ∈ A1, a2 ∈ A2, …, ak ∈ Ak that is divisible by a "small" prime.

UR - http://www.scopus.com/inward/record.url?scp=84972564464&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84972564464&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84972564464

VL - 133

SP - 363

EP - 379

JO - Pacific Journal of Mathematics

JF - Pacific Journal of Mathematics

SN - 0030-8730

IS - 2

ER -