### Abstract

In this paper we show that if A_{1}, A_{2}, …, A_{k} are "dense" sets of integers, then there is a sum a_{1} + a_{2} + … + a_{k} with a_{1} ∈ A_{1}, a_{2} ∈ A_{2}, …, a_{k} ∈ A_{k} that is divisible by a "small" prime.

Original language | English |
---|---|

Pages (from-to) | 363-379 |

Number of pages | 17 |

Journal | Pacific Journal of Mathematics |

Volume | 133 |

Issue number | 2 |

Publication status | Published - 1988 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Pacific Journal of Mathematics*,

*133*(2), 363-379.

**On divisors of sums of integers, III.** / Pomerance, Carl; Sárközy, A.; Stewart, C. L.

Research output: Contribution to journal › Article

*Pacific Journal of Mathematics*, vol. 133, no. 2, pp. 363-379.

}

TY - JOUR

T1 - On divisors of sums of integers, III

AU - Pomerance, Carl

AU - Sárközy, A.

AU - Stewart, C. L.

PY - 1988

Y1 - 1988

N2 - In this paper we show that if A1, A2, …, Ak are "dense" sets of integers, then there is a sum a1 + a2 + … + ak with a1 ∈ A1, a2 ∈ A2, …, ak ∈ Ak that is divisible by a "small" prime.

AB - In this paper we show that if A1, A2, …, Ak are "dense" sets of integers, then there is a sum a1 + a2 + … + ak with a1 ∈ A1, a2 ∈ A2, …, ak ∈ Ak that is divisible by a "small" prime.

UR - http://www.scopus.com/inward/record.url?scp=84972564464&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84972564464&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84972564464

VL - 133

SP - 363

EP - 379

JO - Pacific Journal of Mathematics

JF - Pacific Journal of Mathematics

SN - 0030-8730

IS - 2

ER -