On additive decompositions of the set of primitive roots modulo p

Cécile Dartyge, A. Sárközy

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

It is conjectured that the set G of the primitive roots modulo p has no decomposition (modulo p) of the form G = A + B with {pipe}A{pipe} ≥ 2, {pipe}B{pipe} ≥ 2. This conjecture seems to be beyond reach but it is shown that if such a decomposition of G exists at all, then {pipe}A{pipe}, {pipe}B{pipe} must be around p1/2, and then this result is applied to show that G = A + B + C with {pipe}A{pipe} ≥ 2, {pipe}B{pipe} ≥ 2, {pipe}C{pipe} ≥ 2.

Original languageEnglish
Pages (from-to)317-328
Number of pages12
JournalMonatshefte fur Mathematik
Volume169
Issue number3-4
DOIs
Publication statusPublished - 2013

Fingerprint

Primitive Roots
Modulo
Decompose
Form

Keywords

  • Additive decomposition
  • Inverse theorem
  • Primitive roots
  • Sumset

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

On additive decompositions of the set of primitive roots modulo p. / Dartyge, Cécile; Sárközy, A.

In: Monatshefte fur Mathematik, Vol. 169, No. 3-4, 2013, p. 317-328.

Research output: Contribution to journalArticle

@article{3d7f827bd76c434f85ee0529f4de86c6,
title = "On additive decompositions of the set of primitive roots modulo p",
abstract = "It is conjectured that the set G of the primitive roots modulo p has no decomposition (modulo p) of the form G = A + B with {pipe}A{pipe} ≥ 2, {pipe}B{pipe} ≥ 2. This conjecture seems to be beyond reach but it is shown that if such a decomposition of G exists at all, then {pipe}A{pipe}, {pipe}B{pipe} must be around p1/2, and then this result is applied to show that G = A + B + C with {pipe}A{pipe} ≥ 2, {pipe}B{pipe} ≥ 2, {pipe}C{pipe} ≥ 2.",
keywords = "Additive decomposition, Inverse theorem, Primitive roots, Sumset",
author = "C{\'e}cile Dartyge and A. S{\'a}rk{\"o}zy",
year = "2013",
doi = "10.1007/s00605-011-0360-y",
language = "English",
volume = "169",
pages = "317--328",
journal = "Monatshefte fur Mathematik",
issn = "0026-9255",
publisher = "Springer Wien",
number = "3-4",

}

TY - JOUR

T1 - On additive decompositions of the set of primitive roots modulo p

AU - Dartyge, Cécile

AU - Sárközy, A.

PY - 2013

Y1 - 2013

N2 - It is conjectured that the set G of the primitive roots modulo p has no decomposition (modulo p) of the form G = A + B with {pipe}A{pipe} ≥ 2, {pipe}B{pipe} ≥ 2. This conjecture seems to be beyond reach but it is shown that if such a decomposition of G exists at all, then {pipe}A{pipe}, {pipe}B{pipe} must be around p1/2, and then this result is applied to show that G = A + B + C with {pipe}A{pipe} ≥ 2, {pipe}B{pipe} ≥ 2, {pipe}C{pipe} ≥ 2.

AB - It is conjectured that the set G of the primitive roots modulo p has no decomposition (modulo p) of the form G = A + B with {pipe}A{pipe} ≥ 2, {pipe}B{pipe} ≥ 2. This conjecture seems to be beyond reach but it is shown that if such a decomposition of G exists at all, then {pipe}A{pipe}, {pipe}B{pipe} must be around p1/2, and then this result is applied to show that G = A + B + C with {pipe}A{pipe} ≥ 2, {pipe}B{pipe} ≥ 2, {pipe}C{pipe} ≥ 2.

KW - Additive decomposition

KW - Inverse theorem

KW - Primitive roots

KW - Sumset

UR - http://www.scopus.com/inward/record.url?scp=84874020664&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874020664&partnerID=8YFLogxK

U2 - 10.1007/s00605-011-0360-y

DO - 10.1007/s00605-011-0360-y

M3 - Article

VL - 169

SP - 317

EP - 328

JO - Monatshefte fur Mathematik

JF - Monatshefte fur Mathematik

SN - 0026-9255

IS - 3-4

ER -