### Abstract

Let L ≠ Kinp be a p-chromatic graph and e be an edge of L such that L - e is (p-1)-chromatic If G^{n} is a graph of n vertices without containing L but containing K_{p}, then the minimum valence of G^{n} is ≤n1- 1 p- 3 2+O(1).

Original language | English |
---|---|

Pages (from-to) | 323-334 |

Number of pages | 12 |

Journal | Discrete Mathematics |

Volume | 5 |

Issue number | 4 |

DOIs | |

Publication status | Published - 1973 |

### Fingerprint

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Theoretical Computer Science

### Cite this

**On a valence problem in extremal graph theory.** / Erdös, P.; Simonovits, M.

Research output: Contribution to journal › Article

*Discrete Mathematics*, vol. 5, no. 4, pp. 323-334. https://doi.org/10.1016/0012-365X(73)90126-X

}

TY - JOUR

T1 - On a valence problem in extremal graph theory

AU - Erdös, P.

AU - Simonovits, M.

PY - 1973

Y1 - 1973

N2 - Let L ≠ Kinp be a p-chromatic graph and e be an edge of L such that L - e is (p-1)-chromatic If Gn is a graph of n vertices without containing L but containing Kp, then the minimum valence of Gn is ≤n1- 1 p- 3 2+O(1).

AB - Let L ≠ Kinp be a p-chromatic graph and e be an edge of L such that L - e is (p-1)-chromatic If Gn is a graph of n vertices without containing L but containing Kp, then the minimum valence of Gn is ≤n1- 1 p- 3 2+O(1).

UR - http://www.scopus.com/inward/record.url?scp=0013380976&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0013380976&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(73)90126-X

DO - 10.1016/0012-365X(73)90126-X

M3 - Article

AN - SCOPUS:0013380976

VL - 5

SP - 323

EP - 334

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 4

ER -