On a valence problem in extremal graph theory

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

Let L ≠ Kinp be a p-chromatic graph and e be an edge of L such that L - e is (p-1)-chromatic If Gn is a graph of n vertices without containing L but containing Kp, then the minimum valence of Gn is ≤n1- 1 p- 3 2+O(1).

Original languageEnglish
Pages (from-to)323-334
Number of pages12
JournalDiscrete Mathematics
Volume5
Issue number4
DOIs
Publication statusPublished - 1973

Fingerprint

Extremal Graph Theory
Graph theory
Graph in graph theory

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

On a valence problem in extremal graph theory. / Erdös, P.; Simonovits, M.

In: Discrete Mathematics, Vol. 5, No. 4, 1973, p. 323-334.

Research output: Contribution to journalArticle

@article{24f791a411744b3a96a9adcd55d22d87,
title = "On a valence problem in extremal graph theory",
abstract = "Let L ≠ Kinp be a p-chromatic graph and e be an edge of L such that L - e is (p-1)-chromatic If Gn is a graph of n vertices without containing L but containing Kp, then the minimum valence of Gn is ≤n1- 1 p- 3 2+O(1).",
author = "P. Erd{\"o}s and M. Simonovits",
year = "1973",
doi = "10.1016/0012-365X(73)90126-X",
language = "English",
volume = "5",
pages = "323--334",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "4",

}

TY - JOUR

T1 - On a valence problem in extremal graph theory

AU - Erdös, P.

AU - Simonovits, M.

PY - 1973

Y1 - 1973

N2 - Let L ≠ Kinp be a p-chromatic graph and e be an edge of L such that L - e is (p-1)-chromatic If Gn is a graph of n vertices without containing L but containing Kp, then the minimum valence of Gn is ≤n1- 1 p- 3 2+O(1).

AB - Let L ≠ Kinp be a p-chromatic graph and e be an edge of L such that L - e is (p-1)-chromatic If Gn is a graph of n vertices without containing L but containing Kp, then the minimum valence of Gn is ≤n1- 1 p- 3 2+O(1).

UR - http://www.scopus.com/inward/record.url?scp=0013380976&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0013380976&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(73)90126-X

DO - 10.1016/0012-365X(73)90126-X

M3 - Article

VL - 5

SP - 323

EP - 334

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 4

ER -