Note on the order of magnitude of k for complete k-arcs in PG(2,q)

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

In this paper we prove that the set A = {k/q {divides}there exists a complete k-arc in PG(2,q)} is dense in [0, 1 2].

Original languageEnglish
Pages (from-to)279-282
Number of pages4
JournalDiscrete Mathematics
Volume66
Issue number3
DOIs
Publication statusPublished - 1987

Fingerprint

Divides
Arc of a curve

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Note on the order of magnitude of k for complete k-arcs in PG(2,q). / Szőnyi, T.

In: Discrete Mathematics, Vol. 66, No. 3, 1987, p. 279-282.

Research output: Contribution to journalArticle

@article{191c56488156452dae6cb1a40d3bffb9,
title = "Note on the order of magnitude of k for complete k-arcs in PG(2,q)",
abstract = "In this paper we prove that the set A = {k/q {divides}there exists a complete k-arc in PG(2,q)} is dense in [0, 1 2].",
author = "T. Szőnyi",
year = "1987",
doi = "10.1016/0012-365X(87)90102-6",
language = "English",
volume = "66",
pages = "279--282",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - Note on the order of magnitude of k for complete k-arcs in PG(2,q)

AU - Szőnyi, T.

PY - 1987

Y1 - 1987

N2 - In this paper we prove that the set A = {k/q {divides}there exists a complete k-arc in PG(2,q)} is dense in [0, 1 2].

AB - In this paper we prove that the set A = {k/q {divides}there exists a complete k-arc in PG(2,q)} is dense in [0, 1 2].

UR - http://www.scopus.com/inward/record.url?scp=38249035704&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38249035704&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(87)90102-6

DO - 10.1016/0012-365X(87)90102-6

M3 - Article

AN - SCOPUS:38249035704

VL - 66

SP - 279

EP - 282

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 3

ER -