Note on disjoint blocking sets in galois planes

János Barát, Stefano Marcugini, Fernanda Pambianco, T. Szőnyi

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

In this paper, we show that there are at least cq disjoint blocking sets in PG(2, q), where c ≈ 1/3. The result also extends to some non-Desarguesian planes of order q.

Original languageEnglish
Pages (from-to)149-158
Number of pages10
JournalJournal of Combinatorial Designs
Volume14
Issue number2
DOIs
Publication statusPublished - Mar 2006

Fingerprint

Blocking Set
Galois
Disjoint

Keywords

  • Blocking set
  • Projective plane

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics

Cite this

Note on disjoint blocking sets in galois planes. / Barát, János; Marcugini, Stefano; Pambianco, Fernanda; Szőnyi, T.

In: Journal of Combinatorial Designs, Vol. 14, No. 2, 03.2006, p. 149-158.

Research output: Contribution to journalArticle

Barát, János ; Marcugini, Stefano ; Pambianco, Fernanda ; Szőnyi, T. / Note on disjoint blocking sets in galois planes. In: Journal of Combinatorial Designs. 2006 ; Vol. 14, No. 2. pp. 149-158.
@article{5f19efe5ed5c4016abb796ce1db0f0d1,
title = "Note on disjoint blocking sets in galois planes",
abstract = "In this paper, we show that there are at least cq disjoint blocking sets in PG(2, q), where c ≈ 1/3. The result also extends to some non-Desarguesian planes of order q.",
keywords = "Blocking set, Projective plane",
author = "J{\'a}nos Bar{\'a}t and Stefano Marcugini and Fernanda Pambianco and T. Szőnyi",
year = "2006",
month = "3",
doi = "10.1002/jcd.20073",
language = "English",
volume = "14",
pages = "149--158",
journal = "Journal of Combinatorial Designs",
issn = "1063-8539",
publisher = "John Wiley and Sons Inc.",
number = "2",

}

TY - JOUR

T1 - Note on disjoint blocking sets in galois planes

AU - Barát, János

AU - Marcugini, Stefano

AU - Pambianco, Fernanda

AU - Szőnyi, T.

PY - 2006/3

Y1 - 2006/3

N2 - In this paper, we show that there are at least cq disjoint blocking sets in PG(2, q), where c ≈ 1/3. The result also extends to some non-Desarguesian planes of order q.

AB - In this paper, we show that there are at least cq disjoint blocking sets in PG(2, q), where c ≈ 1/3. The result also extends to some non-Desarguesian planes of order q.

KW - Blocking set

KW - Projective plane

UR - http://www.scopus.com/inward/record.url?scp=33645161846&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33645161846&partnerID=8YFLogxK

U2 - 10.1002/jcd.20073

DO - 10.1002/jcd.20073

M3 - Article

AN - SCOPUS:33645161846

VL - 14

SP - 149

EP - 158

JO - Journal of Combinatorial Designs

JF - Journal of Combinatorial Designs

SN - 1063-8539

IS - 2

ER -