Nonlinear critical dynamics of a spherical model

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

The nonlinear critical slowing down of the order is calculated for the time-dependent Ginzburg-Landau model in the limit of infinite spin dimensionality. The scaling law Δ(nℓ) = Δ(ℓ) - β is verified for this model.

Original languageEnglish
Pages (from-to)3-4
Number of pages2
JournalPhysics Letters, Section A: General, Atomic and Solid State Physics
Volume60
Issue number1
DOIs
Publication statusPublished - Jan 24 1977

Fingerprint

scaling laws

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Nonlinear critical dynamics of a spherical model. / Rácz, Z.; Tél, T.

In: Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 60, No. 1, 24.01.1977, p. 3-4.

Research output: Contribution to journalArticle

@article{d7237722fa574037ba20522333dd5220,
title = "Nonlinear critical dynamics of a spherical model",
abstract = "The nonlinear critical slowing down of the order is calculated for the time-dependent Ginzburg-Landau model in the limit of infinite spin dimensionality. The scaling law Δ(nℓ) = Δ(ℓ) - β is verified for this model.",
author = "Z. R{\'a}cz and T. T{\'e}l",
year = "1977",
month = "1",
day = "24",
doi = "10.1016/0375-9601(77)90298-5",
language = "English",
volume = "60",
pages = "3--4",
journal = "Physics Letters, Section A: General, Atomic and Solid State Physics",
issn = "0375-9601",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - Nonlinear critical dynamics of a spherical model

AU - Rácz, Z.

AU - Tél, T.

PY - 1977/1/24

Y1 - 1977/1/24

N2 - The nonlinear critical slowing down of the order is calculated for the time-dependent Ginzburg-Landau model in the limit of infinite spin dimensionality. The scaling law Δ(nℓ) = Δ(ℓ) - β is verified for this model.

AB - The nonlinear critical slowing down of the order is calculated for the time-dependent Ginzburg-Landau model in the limit of infinite spin dimensionality. The scaling law Δ(nℓ) = Δ(ℓ) - β is verified for this model.

UR - http://www.scopus.com/inward/record.url?scp=49449127753&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=49449127753&partnerID=8YFLogxK

U2 - 10.1016/0375-9601(77)90298-5

DO - 10.1016/0375-9601(77)90298-5

M3 - Article

AN - SCOPUS:49449127753

VL - 60

SP - 3

EP - 4

JO - Physics Letters, Section A: General, Atomic and Solid State Physics

JF - Physics Letters, Section A: General, Atomic and Solid State Physics

SN - 0375-9601

IS - 1

ER -